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Abstract 

 

A Reusable Command and Data Handling System for 

University CubeSat Missions 

 

Shaina Ashley Mattu Johl, M.S.E 

The University of Texas at Austin, 2013 

 

Supervisor:  E. Glenn Lightsey 

 

A Command and Data Handling (C&DH) system is being developed as part of a 

series of CubeSat missions being built at The University of Texas at Austin’s Texas 

Spacecraft Laboratory (TSL). With concurrent development of four missions, and with 

more missions planned for the future, the C&DH team is developing a system 

architecture that can support many mission requirements. The presented research aims to 

establish itself as a reference for the development of the C&DH system architecture so 

that it can be reused for future university missions. The C&DH system is designed using 

a centralized architecture with one main flight computer controlling the actions and the 

state of the satellite. A Commercial Off-The-Shelf (COTS) system-on-module embedded 

computer running a Linux environment hosted on a custom interface board is used as the 

platform for the mission software. This design choice and the implementation details of 

the flight software are described in detail in this report. The design of the flight software 

and the associated hardware are integral components of the spacecraft for the current 

missions in the TSL which, when flown, will be some of the most operationally complex 

CubeSat missions attempted to date. 
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Chapter 1:  Introduction 

Small satellites have been an emerging class of spacecraft in the satellite industry 

for the past several years. Satellites classified under this title are considered those with a 

mass of less than 180 kilograms, and include commonly named satellite terms such as 

micro- (10-100 kg), nano- (1-10 kg), and picosatellites (0.001 – 1kg) (National 

Aeronautics and Space Administration 2013). There has been growing interest in using 

small satellites for civil, commercial and military space purposes. A study identified 33 

potential markets for low-cost small satellites in these sectors, and six markets that are 

likely near-team users (Foust 2010): 

 Military science and technology 

 Intelligence, surveillance, and reconnaissance 

 Remote site communications 

 Polling of unattended sensors 

 High-resolution Earth observation 

 Landsat-class data for environmental monitoring 

Technological advancement over the past decades has allowed the size of the 

payloads and instruments for space missions to continue to decrease (Toorian, Diaz and 

Lee 2008). This has made the use of the CubeSat form factor, a type of small satellite on 

the smaller end of the size scale, more common. This chapter introduces the CubeSat and 

its C&DH subsystem. The motivation behind this thesis and its structure is then 

presented. 

1.1 CUBESAT FORM FACTOR 

The CubeSat was developed in 1999 by California Polytechnic State University’s 

Multidisciplinary Space Technology Laboratory (MSTL) and Stanford’s Space Systems 

Development Laboratory (Toorian, Diaz and Lee 2008). A satellite is designated a 

CubeSat if it meets the requirements outlined in the CubeSat Design Specification 

(California Polytechnic State University 2009). A 1U CubeSat form factor is 10 cm x 10 

cm x 10 cm. However, CubeSats can be 1U, 2U, 3U, 6U or other sizes, but must weigh 
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less than 1.33 kg per U under the current standard. The standardized CubeSat deployment 

system is called the Poly Picosatellite Orbital Deployer (P-POD). The P-POD acts as the 

interface between the launch vehicle and the satellite, and is capable of carrying up to 3 

1U satellites (or 1 3U satellite) in a single deployer.  

 

 

Figure 1. P-Pod Deployer 

CubeSats provides several favourable attributes over their larger counterparts, 

namely development time to launch and cost. CubeSats can be developed faster than 

larger spacecraft. CubeSat missions can go from conception to delivery in as little as a 

few years. This is partially due to CubeSats having less complex missions and shorter 

lifetimes. Another contributing factor is that CubeSats can be assembled using COTS 

components, thus eliminating the time that would be required to design and test 

components that would be fabricated in-house, and only leaving the time needed for 

proper interfacing with the COTS components.  

CubeSats also have a lower cost for access to space than larger spacecraft. Due to 

their small size, CubeSats can be launched as secondary payloads on launch vehicles 

dedicated to a larger satellite, or by integrating the CubeSat into the larger satellite and 

being launched from it. There are currently a number of programs that provide 

ridesharing for CubeSats, such as the University NanoSatellite program (UNP), and 

NASA’s CubeSat Launch Initiative (CSLI).  

The ability to quickly develop and deploy CubeSats, along with significant flight 

heritage, makes them an attractive form of spacecraft for many types of missions. The 
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first CubeSat missions were launched in 2003, and since then there has been over 70 U.S. 

companies, 50 U.S. universities and 41 foreign universities that have worked on building 

and flying these spacecraft  (National Reconnaissance Office 2013).   

1.2 COMMAND AND DATA HANDLING SUBSYSTEM 

As the CubeSat industry continues to grow, there will be a larger demand for 

CubeSats to handle more complex mission and operational requirements. These 

requirements flow down to affect the Command and Data Handling (C&DH) subsystem 

of the satellite. The C&DH subsystem acts as the “brain” of the spacecraft. It consists of 

the hardware, including the main flight computer, and the software that controls the 

operations of the satellite. 

1.3 MOTIVATION 

The goal of this thesis is to document the work done in developing the C&DH 

subsystem used for the current missions in the Texas Spacecraft Lab (TSL) at the 

University of Texas at Austin (UT). The TSL has flown two satellites, and is currently 

working on three additional satellites that will use the C&DH system. The experience 

gained by past missions has made obvious the need to develop a re-usable C&DH system 

for CubeSats. This thesis aims at describing this effort and promoting the reuse of the 

C&DH system. The thesis acts as a guide for the design, implementation, and testing 

process of the components that comprise the C&DH system, with an emphasis on the 

development of the flight software. Prior to this research, the TSL did not have a reusable 

architecture for the C&DH system. The research done for this thesis aims to establish a 

standard for the development of the C&DH system architecture so that it can be reused 

for all future TSL missions. 

1.4 THESIS STRUCTURE 

The layout of the thesis is as follows. Chapter 2 introduces the reader to the TSL 

at UT and provides background information on past and current missions designed and 

supported by the lab.  The design requirements of the common C&DH system are 
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introduced in Chapter 3, and a description of the C&DH hardware and software is 

presented. The current system in development is also compared to the C&DH systems 

from previous missions in the TSL, namely FASTRAC and Bevo-1, which served both as 

a starting point for the design of the current system and as a knowledge bank which 

provided guidance throughout the development process. Chapter 4 focuses on the 

architecture of the flight software currently being implemented and tested for the current 

TSL missions, as well as the C&DH software infrastructure put in place to aid in the 

development of the code. Chapter 5 then describes the main features of the 

implementation of the flight software.  Information on the methods and the results from 

testing the C&DH software, including the flight software running on the integrated 

satellite, is given in Chapter 6. Finally, recommendations are made on what the focus 

should be on for future work on the C&DH system and presented in Chapter 7. 

Collectively, the topics discussed in this thesis were steps taken in the design, 

implementation and testing of the C&DH system and flight software developed for 

current and future missions in the TSL. 
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Chapter 2:  Background 

The C&DH system being developed, while it is the focus of this thesis, is only 

one key component in the satellite design work being performed in the Texas Spacecraft 

Laboratory at the University of Texas at Austin. The work performed in the TSL involves 

the application of skills and knowledge from many different fields of engineering, all of 

which contribute to the development of small satellites. 

2.1 TEXAS SPACECRAFT LABORATORY 

The technical staff of the TSL at UT-Austin consists of a group of roughly thirty 

graduate and undergraduate students who work together on the lab’s satellite missions. 

The students are involved in all steps of the satellite fabrication process including the 

design, build, test and operation of the spacecraft.  

Since 2007, the lab has launched three satellites into orbit, FASTRAC-1, 

FASTRAC-2 and Bevo-1. The TSL is currently working on three additional satellites that 

will fly within the next two years, Bevo-2, ARMADILLO (Atmosphere Related 

Measurements and Detection submiLLimiter Objects) and RACE (Radiometer 

Atmospheric CubeSat Experiment).  

2.2 PAST MISSIONS 

 The TSL is a multi-purpose facility. Here, students combine past experience, 

heritage designs, COTS hardware, and new ideas to develop concepts for new satellites 

and missions. In an environment where students graduate and take their knowledge 

gained at UT-Austin with them, it is important to make provisions for ensuring that the 

lessons learned throughout the satellite development process are recorded. Documenting 

lessons learned is critical for maintaining progress in a lab where there is a large turnover 

rate every semester. However, this can be challenging in a university setting where there 

is less manpower and monetary resources, and generally a shorter project lifetime than in 

industry. Keeping accurate records and preserving knowledge through documentation is 

especially critical for software implementation in the lab as it is very difficult to read and 



6 

 

understand someone else’s code. The documentation of the software from the previous 

TSL missions was instrumental in providing a starting point for the development of the 

current C&DH system. The design of the software for the current TSL missions began 

with an analysis of the lessons learned from FASTRAC and Bevo-1. A brief overview of 

these past two missions will be given in the proceeding sub-sections.  

2.2.1 FASTRAC 

FASTRAC, (Formation Autonomy Spacecraft with Thrust, Relnav, Attitude, and 

Crosslink) was a satellite built by the TSL for which work began in 2003. It was the 

winning entry of the University Nanosat-3 Competition in 2005. The University 

NanoSatellite Program, sponsored by the Air Force Research Laboratory (AFRL), gives 

university students hands-on experience in designing and constructing satellites in a two-

year concept-to-flight-ready competition. While working with personnel at AFRL, the 

two FASTRAC satellites, known as Sara Lily and Emma, were prepared for flight after 

several component and hardware redesigns and modifications, as well as extensive 

environmental testing which lasted until February 2010 (Munoz, Hornbuckle and 

Lightsey 2012). FASTRAC was successfully launched in November 2010, and the 

separated satellites are currently still operating in orbit. As of April 2012, over 16 000 

beacon messages as well as telemetry data such as health, GPS, thruster and IMU 

messages had been received by the Operations team. 

The FASTRAC project consisted of two nearly identical NanoSatellites, as shown 

in Figure 2, with three primary mission objectives. The FASTRAC satellites are the two 

stacked hexagonal objects in the foreground of the figure.   
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Figure 2. FASTRAC (Center) mated onto the adapter plate of STP-S26 (Hernandez, 

2011) 

 

The first mission objective entailed establishing an autonomous crosslink between 

the two satellites. The second objective involved performing on-orbit real-time GPS 

relative navigation. The final objective demonstrated autonomous thruster firing logic 

based on the on-orbit real-time single antenna GPS attitude determination solution 

(Munoz, Hornbuckle and Lightsey 2012).  

The FASTRAC mission provided the TSL with valuable experiences and lessons 

learned on the development, implementation and operation of student-built satellites.  

2.2.2 BEVO-1 

The Bevo-1 satellite was built by the TSL as the first of four missions as part of 

the LONESTAR (Low Earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and docking) program. This program, sponsored by NASA's 

Johnson Space Center (JSC), is a collaborative project between the TSL at UT-Austin 

and the AggieSat Lab at Texas A&M University (Department of Aerospace and 

Engineering Mechanics at the University of Texas at Austin 2013). Its aim is to promote 

aerospace engineering education and to provide an opportunity for research in low-cost 

autonomous rendezvous and proximity operations techniques (AggieSat Lab 2010). Each 

mission is comprised of one satellite built by each school with the mission objectives 
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increasing in complexity. The first three missions lead up to the final mission objective of 

demonstrating autonomous rendezvous and docking between the two cooperative 

spacecraft. Each of the missions of the program demonstrates new technologies and 

operations that are necessary to achieve the final mission. The mission objective for 

Bevo-1 was to collect and downlink two orbits of GPS data to validate NASA JSC’s 

DRAGON (Dual RF Astrodynamic GPS Orbital Navigator) GPS receiver (Johl and 

Imken 2012). Bevo-1 along with AggieSat2 by Texas A&M, depicted in Figure 3, were 

launched together aboard the Space Shuttle Endeavour in July 2009. Bevo-1 is shown on 

the left of the figure, and AggieSat2 is on the right of the figure. The two satellites were 

designed to push apart and separate completely from each other upon launch. However, 

they failed to separate upon deployment. Bevo-1 never powered on, and contact was 

never established with the satellite. The satellites reentered in early 2010. Despite the 

failure to achieve the mission objectives, Bevo-1 provided valuable experience and 

perspective on best engineering practices in a university low budget hardware 

environment. 

 

Figure 3. Bevo-1 and AggieSat2 Satellites (AggieSat Lab 2010) 
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2.3 CURRENT MISSIONS 

The TSL is currently working on three 3U CubeSat missions simultaneously, 

Bevo-2, RACE, and ARMADILLO. The design architectures of these three satellites are 

very similar. The structural layouts of Bevo-2 and ARMADILLO consist of three 

modules, the bus module, the ADC module, and the payload module. The bus modules of 

both satellites will be identical, but there will be differences in some components for the 

ADC and payload modules, as they are designed to meet very different requirements. 

RACE is also a 3U CubeSat, but with 1.5U dedicated to the radiometer instrument 

provided by JPL. A brief overview of these three missions is provided in this section. 

2.3.1 BEVO-2 

Bevo-2 is UT-Austin’s satellite as part of the second mission of the LONESTAR 

program. 

 

Figure 4. CAD Model of Bevo-2 Spacecraft 

The goal of this second mission is to launch two satellites together, Bevo-2 and 

AggieSat-4, which will separate in orbit and perform proximity operations. For Bevo-2 

specifically, the mission objectives are as follows (Texas Spacecraft Laboratory 2011): 

 Evaluate sensors including but not limited to GPS receivers, IMUs, rate 

gyros, accelerometers 

 Evaluate Reaction Control System (RCS).  

 Evaluate GN&C system including guidance algorithms, absolute 

navigation, and relative navigation 
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 Evaluate communications capabilities between the two spacecraft and 

from each spacecraft to their ground stations. 

 Evaluate capability to take video. 

AggieSat-4 is an approximately 50 kg NanoSatellite built by Texas A&M. Bevo-2 will be 

stowed inside AggieSat-4 during launch. A JAXA (Japanese Aerospace Exploration 

Agency) airlock aboard the International Space Station (ISS) will be used to release 

AggieSat-4 into low Earth orbit, which will then discharge Bevo-2 (Kjellberg 2011). The 

Concept of Operations for Bevo-2 is shown in Figure 5.   

 

Figure 5. Illustrative View of Bevo-2 Concept of Operations (Texas Spacecraft 

Laboratory 2011) 

 

 Bevo-2 and AggieSat-4 will be launched into ISS orbit, and will have an estimated 

lifetime of 6 months. Upon separation, the two satellites will perform crosslink 

communication of GPS data. 

Bevo-2 features an in-house miniaturized star tracker that will also be used to take 

images of AggieSat4. 
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Figure 6. Star Tracker Camera to be used on Bevo-2 and ARMADILLO Spacecraft 

 Bevo-2 also features the same six degree-of-freedom ADC module as 

ARMADILLO, which, after the checkout stage, will be characterized by performing a 

series of sensor and actuator tests. Another component is an in-house designed cold gas 

thruster which will be used to perform a rendezvous maneuver to place the satellite in a 

pre-defined state in space. The LONESTAR-2 mission is planned for flight in 2014.  

  

Figure 7 Cold Gas Thruster for Bevo-2 Spacecraft (Lightsey 2013) 

2.3.2 RACE 

RACE is a 3U CubeSat developed in collaboration with JPL, who will be 

providing the radiometer payload. The TSL’s involvement in the RACE mission began in 
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April 2013. The primary mission objectives of RACE are to advance the technology 

readiness level of the radiometer instrument, thereby reducing the risk for future 

missions. The system includes a 35 nm Indium Phosphide low noise amplifier (LNA) at 

the front-end, and will be the first millimeter wave radiometer to be flown on a CubeSat 

(Jet Propulsion Laboratory 2013). Demonstrating the radiometer on a small and cost 

effective CubeSat will advance Earth science measurements for future missions. In 

addition, the data collected from the instrument will be used with weather prediction 

models to advance existing Earth climate system models.  

 

Figure 8. Modular CAD Model of RACE Spacecraft 

While JPL is responsible for delivering the radiometer, the TSL is responsible for 

building and testing the CubeSat bus, and managing the payload integration. Upon launch 

in 2014, the TSL will also manage the ground segment, including data collection. RACE 

will be launched into an ISS altitude orbit, and will have a planned operational lifetime of 

approximately 6 months.   



13 

 

2.3.3 ARMADILLO 

ARMADILLO is the TSL’s winning entry into the UNP-7 competition sponsored 

by the US Air Force. The primary objective of this mission is to characterize sub-

millimeter diameter dust and debris particles that are present in low Earth orbit. 

ARMADILLO features a Piezoelectric Dust Detector (PDD) being built by Baylor 

University that will detect the particles upon impact with the instrument. The impact will 

produce an electric charge which will be recorded and stored by the PDD until the 

C&DH computer queries the instrument. The data is then post-processed and provided to 

atmospheric models which will improve the knowledge of the sub-millimeter space 

debris environment (Brumbaugh 2012). 

 

Figure 9. Exploded View of ARMADILLO (Brumbaugh 2012) 

The secondary objective of ARMADILLO involves using a dual-frequency GPS 

receiver designed at UT-Austin called the FOTON (Fast, Orbital, TEC, Observables, and 

Navigation) to measure GPS radio occultations for studying the Earth's ionosphere. The 
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data collected by the FOTON will help increase the understanding and forecasting of 

space weather. 

ARMADILLO also features a six degree-of-freedom ADC module developed in-

house at TSL that provides arc-minute level 3-axis attitude control. The ADC will 

provide the pointing accuracy required by the PDD for data collection. The concept of 

operations for ARMADILLO is shown in Figure 10. As shown, the current plan is for 

ARMADILLO to be launched into an orbit with an altitude of 500 km, and to have an 

estimated mission lifetime of 2 years.   

 

 

Figure 10. Illustrative View of ARMADILLO Concept of Operations (Brumbaugh 2012) 
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2.3.4 Current Status of Missions  

As of fall 2013, Bevo-2 is currently in the integration and testing phase of its 

development cycle. The final preparations for running integrated tests on the flight 

version of the satellite are underway. The satellite is scheduled to be delivered to NASA 

in the first quarter of 2014, and will be launched later in 2014.  

RACE is also manifested for launch in 2014 through NASA’s CubeSat Launch 

Initiative program. All of the C&DH software and most of the overall Flight Software 

(FSW) testing being performed for Bevo-2 is directly applicable to the RACE mission. 

The EM radiometer was delivered by JPL to the TSL in November 2013. Full integrated 

satellite testing is underway.  

Code development and testing is continuing to progress for the two 

ARMADILLO payload systems, the FOTON and the PDD. Certain components of the 

flight hardware need to be acquired before a flight build can begin, such as the UHF/VHF 

radio and the Electrical Power System (EPS) system. The ARMADILLO mission was 

manifested by the CubeSat Launch Initiative program for a launch in 2015.  

In terms of the C&DH system for these missions, a version of the software 

common to all three satellites has been written. The software running on the integrated 

satellite for Bevo-2 has been tested through functional tests, and command execution 

tests. The next software version will be considered FSW for Bevo-2 once day-in-the-life 

testing has been completed. Specific subsystem-C&DH software interfaces for the 

respective payloads are needed in order to use this next version as the RACE and 

ARMADILLO missions’ FSW. 
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Chapter 3: Components of C&DH System 

Even though Bevo-2, RACE and ARMADILLO have very different mission 

requirements, all subsystems developed in the TSL, with the exception of the payloads, 

are designed such that they are capable of completing all three missions’ objectives. As 

the three satellites are scheduled to be delivered in the upcoming few years, this 

simultaneous development adds to the existing challenges of a student-run lab such as 

manpower, time, and resource constraints. Eliminating unnecessary re-engineering by 

developing modular subsystems that can be used on a variety of TSL CubeSat missions is 

a valuable concept to implement. Thus, the developed C&DH system discussed in this 

thesis was designed to be used for all three current missions of the TSL.  

 The C&DH system requirements common to all current missions are outlined in 

this chapter. These requirements were the driving force behind the selection of the 

C&DH hardware. The C&DH hardware used for the current missions in the TSL have 

not been used on a previous mission in this lab, as Bevo-2, RACE and ARMADILLO are 

the most complex missions the TSL has been involved with to date. Because of the 

increased complexity, higher computing requirements and more sophisticated software 

than previously used are needed to successfully complete each mission's requirements. 

The decisions for the choice of the flight computer’s operating system and FSW are 

discussed in the later sections of this chapter. Also, a comparison between the new 

C&DH system architecture and those of the previous Bevo-1 and FASTRAC missions is 

made and discussed in this chapter. 

3.1 CURRENT MISSION REQUIREMENTS 

 As part of the mission design process for Bevo-2, RACE, and ARMADILLO, 

mission statements, objectives, and requirements were formed stating the goals of the 

missions and the criteria that define mission success. In addition, a set of requirements for 

each subsystem was formed and documented in a mission requirements verification 

matrix (RVM). These subsystem requirements were created to ensure that the higher-

level mission requirements were met. The C&DH subsystem has five subsystem 
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requirements that are identical for all three missions. The requirements, the rationale 

behind each requirement, and the success criteria are listed below: 

 

 The C&DH system shall provide 2 GB (unformatted) data storage 

Each of the missions requires a substantial amount of on-board storage for the 

scientific data from the payloads and telemetry data from the other subsystems. In order 

to accommodate this need, it was deemed necessary to utilize external and non-volatile 

storage in the form of SD cards. This requirement is considered met if the C&DH system 

successfully provides 2 GB of storage. This requirement is fulfilled by ensuring that the 

C&DH computer can detect and mount an appropriately sized SD card during the boot up 

process and can write to and read from the card during the mission. It was initially 

decided that there would be two SD cards connected to the C&DH system, one acting as 

the primary storage, and the second card being used for data redundancy. However, a 

design change was made to only incorporate one SD card into the C&DH system as it 

was decided that the redundancy was unnecessary for these CubeSat missions.   

 

 The C&DH system shall receive, process and execute commands within the 

window of a UT-Austin ground station pass 

The missions are considered to be semi-autonomous. In other words, the satellites 

will be able to execute some actions autonomously such as turning on and off various 

components based on conditions such as power levels, or automatically downlinking data 

based on information gathered by an on-board GPS receiver. However, the satellites must 

also be able to process and execute commands that are uplinked from the ground station. 

They must be able to provide responses to these commands, if any, without a long time 

delay so that they are received by the commanding ground station within the same ground 

pass. This requirement is considered met if the C&DH computer can successfully detect 

when the satellite is within communication range of the UT-Austin ground station pass, 

and is able to receive and process commands during the detected pass. The satellite must 
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be able to receive ground commands, which would trigger the satellite to perform an 

action on-board specific to the command. A confirmation that the command was 

processed and satellite actions were taken to execute this command must be recorded, and 

can be sent down to the Austin ground station for proof of verification. An important 

factor in meeting this requirement is the defined interface between the C&DH and 

Communications (COM) subsystems. 

 

 The C&DH system shall activate and begin executing commands upon separation 

from launch vehicle 

It is imperative to overall mission success that the C&DH computer boots upon 

separation from the launch vehicle. If this does not happen, then none of the other 

components will receive the commands necessary for satellite operations. This 

requirement is considered met if the C&DH computer successfully enters the Startup 

mode (the initial mode) of the FSW after launch vehicle separation. This first involves 

the computer being able to start the collection of executables that together comprises the 

software running on the satellite upon bootup. The C&DH computer must then execute 

Hookem, the main executable of the FSW, and enter its initial operational mode. It is in 

this mode that the C&DH can begin executing commands. For the ARMADILLO 

mission, a built-in timeout period of 30 minutes must take place upon launch before 

deployment of the UHF/VHF antennas and before transmission can occur, allowing for 

proper separation distance between the satellite and the launch vehicle.  

 

 The C&DH system shall accept and execute a command to reprogram satellite 

software 

This requirement relates to the methods of handling any incorrect and erroneous 

behavior of the C&DH software. Even with extensive software testing and meticulous 

procedures and documentation generated for the C&DH software, there will still be bugs 

and unforeseen runtime errors. Some of these errors may be resolved through a reset of 
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the C&DH computer. However, other errors might continue to recur even after multiple 

resets, and may require software modification. Therefore, it is important to have the 

ability to repair the software after the satellite is in orbit to not jeopardize the mission 

success. It is also beneficial to have the ability to improve or adapt the software after 

launch. These capabilities would be useful in the case where unforeseen issues arise and 

the characteristics of the current software do not allow the successful completion of 

mission objectives.  

 This requirement is considered met if the C&DH computer successfully interprets 

commands to receive a new flight executable via the radio, stores the executable in the 

proper location, changes the startup script to the new executable, and reboots the 

computer to execute the new FSW.  

 

 The C&DH system shall manage all commands governing the state and actions of 

the satellite 

The main responsibility of the C&DH system is to execute all of the operations 

that control the spacecraft. The C&DH is the only subsystem that can change the state 

(physical and software) of the satellite. All other subsystems are delegated tasks to 

complete independently but remain under the control of the C&DH system. Therefore, 

the C&DH system has the responsibility of managing all other subsystems to execute the 

mission successfully. It must be able to interface with the various hardware components 

of the satellite by sending commands and receiving back acknowledgement of the 

requested actions, as well as health and scientific data.  

3.2 C&DH HARDWARE 

 Following the Space Mission and Analysis Design (SMAD) approach in sizing 

the C&DH system, the first step in selecting the hardware is to identify the functions that 

need to be performed by the system, such as command processing, telemetry gathering 

and storage, and satellite time-keeping (Smith 2008). The subsystem requirements, which 

have been presented in the section above, and constraints, need also to be identified. This 
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aids in determining important characteristics needed from the hardware, such as 

performance, reliability, and radiation tolerance. The next steps are to determine and 

understand the level of complexity required by the identified functions so that a C&DH 

system that can perform these functions will be chosen. The level of complexity is 

dependent on such characteristics as the satellite’s required rate of processing commands, 

the speed of processing telemetry data, and satellite time management. Finally, attributes 

such as size, mass and power of the hardware components that are being considered must 

be taken into account and prioritized based on their level of importance. For example, if 

designing a C&DH system for a large satellite, the size and mass of the C&DH system 

may not be as important as the overall power draw. In contrast, a smaller satellite such as 

a CubeSat will have much larger constraints on satellite mass and size, which would then 

impose constraints on the C&DH mass and size.  

 The steps outlined above were followed when deciding on the flight computer. A 

trade study was performed in order to select the computer used for the current satellite 

missions. The information gathered from the trade study and the description of the 

selected flight computer will be presented in the sections below. 

  The second major C&DH component is the hardware interface board. After 

consideration of available interface boards, a custom board was designed in-house called 

Kesler. The board houses the flight computer and connects it to the peripheral devices 

and other components of the satellite. The Kesler board was based on the needs of not 

only the C&DH system, but of the other subsystems as well. Kesler connects directly to 

the EPS, Attitude Determination and Control (ADC), Navigation Visual System (NVS) 

and Communications (COM) subsystems. The Kesler board also houses the SD card 

acting as the main on-board storage device. The Kesler board and the SD card will be 

discussed in more detail in the following sections. 

3.2.1 Choice of Flight Computer 

The choice of flight computer was made based on a trade study performed by 

Imken in July 2011 (Imken 2011). The results of this trade study are presented here to 

inform the reader on the reasons behind the selection of the current flight computer for 
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Bevo-2 and ARMADILLO. It was decided to use this flight computer for RACE as well 

after conducting the trade study. 

3.2.1.1 System-on-Module Chip 

Rather than building a computer from the processor level upwards, system-on-

modules (SOM) were considered for the trade study. A SOM, also known as a computer-

on-module, is a sub-type of an embedded computer contained on a single circuit board 

that can be plugged into a carrier board (MEN Mikro Elektronik GmbH 2013). SOMs 

come in different configurations but generally consist of a processor and standard 

input/output (I/O) capabilities (Critical Link 2013) which can be configured and broken 

out to other peripheral devices through a carrier board.  

 Starting with a SOM as the processor of the C&DH system instead of designing 

the flight computer in-house has several advantages, particularly for CubeSat missions. 

One of these advantages is its small size, an ideal attribute for CubeSats where size is a 

major constraint for all subsystems. Another advantage is that it simplifies the 

development of the C&DH hardware and allows for more time to be spent on developing 

well-written and well-tested operational FSW. A student-run lab has to deal with 

constraints on manpower and time. Therefore, taking the approach of using an off-the-

shelf embedded computer system for the C&DH computer saves time and effort that 

would otherwise be needed for electronic design at the processor level. For example, 

SOMs include many interfaces which enable easy connection to external peripherals. 

This attribute saves time in designing the complex circuitry needed for proper computer 

interfacing (Johl and Imken 2012), and provides a level of flexibility for multiple 

applications. Being professionally designed, it also improves the reliability of the entire 

C&DH system. It reduces the risk associated with improper design which can lead to 

computer malfunctions in orbit and mission failure. As SOMs are mass-produced COTS 

hardware that is readily available at a low-cost, they are a great option for student-built 

satellites that have budgetary constraints. Finally, processing and computation power is 

not compromised, as these SOM computers are powerful enough to control the whole 

satellite.    
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3.2.1.2 Trade Study 

In the performed trade study, four computers were considered (Texas Spacecraft 

Laboratory 2011). The selection criteria for the trade study is as follows: 

 

 Power consumption 

It was important to select a computer that had a relatively small power 

consumption level. 

 

 Ease of software development 

As the TSL technical staff is comprised mainly of aerospace engineering majors 

and no computer science majors, it was important to select a computer whose software 

interface was easy to comprehend and to use for the developers. Sufficient documentation 

and software support were also important factors in the decision-making process. 

 

 Performance Capabilities 

The chosen SOM must have a processor speed fast enough to handle the planned 

functionalities of the satellite. For the missions being considered for this class of 

satellites, the C&DH system is not a hard real-time system and therefore does not require 

that level of processing performance. The selected computer must provide a sufficient 

amount of memory to store the program files of the FSW and a partial amount of mission 

data in case of SD card failure. The flight computer must also have a large variety of 

peripheral ports for interfacing with the satellite’s subsystems. 

3.2.1.3 Selection of LPC3250 

 Based on the trade study, the selected SOM that best matched the requirements in 

place for the flight computer is the Phytec’s phyCORE LPC3250 (Figure 11). 
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Figure 11. LPC3250 C&DH and ADC Computer 

 This computer includes NXP’s LPC3250 microprocessor consisting of a 266 

MHZ ARM926EJ-S CPU core and Vector Floating Point (VFP) coprocessor, and a large 

set of connections for peripherals (NXP 2011). The microprocessor is designed for low-

power, high-performance applications, which is ideal for the TSL’s CubeSat flight 

computers. Important performance characteristics of the LPC3250 SOM are listed in 

Table 1. 
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Table 1. LPC3250 SOM Performance Characteristics (Phytec 2013) 

CPU Frequency (Max) 208 MHz 

On-Chip Memory 32 KB L1, 256 KB SRAM 

DRAM 64 MB 

NAND 64 MB 

NOR 2 MB 

EEPROM 32 kB 

Available SD/SDIO/MMC Expansion 2 

UART 7 

RS-232 2 

I2C 2 

SPI/SSP 4 

Power Consumption (typical) 372 mW 

Power Supply 3.15 V 

 

The Phytec LPC3250 allows for easy creation and modification of the Linux 

kernel through its well-supported Linux development environment, known as Linux 

Target Image Builder (LTIB). LTIB is a tool for integrating the build and configuration 

of the software packages for an embedded Linux distribution (Phytec 2011). The 

LPC3250 allows for the use of Linux as the running operating system on the SOM. This 

lends itself to a significant amount of customization in terms of the kernel and provides 

pre-existing software tools and libraries. 

3.2.2 Kesler Interface Board 

 The design for the Kesler board is based on the interface board used for the 

satellite’s stand-alone ADC system, developed by QVIS. The Kesler board was designed 

in-house by the C&DH team. The interface board has currently gone through three 

revisions. One significant change between v0 and v1 was switching the connection of the 
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camera to the Kesler from USB to micro USB. This change was made as the old 

configuration would have required the USB port to be in the middle of the interface board 

so that the cable head would not hit the inner shell of the satellite structure. Kesler v1 also 

features a Real Time Clock (RTC) that will be used to keep the time for the satellite and 

that will be updated regularly from the GPS when possible. The RTC incorporates a 

temperature compensated crystal oscillator (TCXO) to keep accurate timing when the 

GPS time is not available. Kesler v1, shown in , will be used as the flight hardware for 

Bevo-2. 

 

Figure 12. Kesler v1 Interface Board 

 

 As shown in the figure, the Kesler board contains a PC104 connector which is 

used to connect the C&DH system with the EPS and UHF/VHF COM boards in a stack 

to comprise the bus module. The Ethernet connector is used so that the file system can be 

kept on a desktop and can be accessed through Network File System (NFS) for testing 

rather than mounting the flight software onto the NAND flash of the LPC3250 every time 

recompiling is required. Using the Ethernet port to access the flight software for testing 

speeds up development time significantly, but it is not included on the flight version of 

this board. 

 One major improvement between the Kesler v0 and the Kesler v1 is the addition 

of power switches to control the power to the subsystem components. These switches are 
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implemented through an IC that is controlled by GPO pins on the LPC3250. The C&DH 

system now has the capability to power on and off the other subsystems. This feature 

proves beneficial when the satellite is transitioning software modes. The flight computer 

can then turn off any subsystems that are not required for nominal operations; for 

example, the payload or the camera. 

Kesler v2, as shown in Figure 13, the most recent version of the board, will be 

used for the RACE and ARMADILLO satellites. The main reason behind modifying the 

design to create a third version of this board was due to the difference in the layout and 

connection design of the EPS system for RACE and ARMADILLO as compared to the 

system for Bevo-2. The EPS system used with Kesler v2 is provided by GomSpace, while 

the EPS system to be flown on Bevo-2 is provided by ClydeSpace. For the GomSpace 

EPS system, the radio connects to the stack upside down, and the Kesler v2 board’s 

PC104 connector must be a male connector with a reversed pinout. This forces the 

LPC3250 to connect at an offset from the centre on the board. Other significant 

modifications to v2 from v1 include a backup battery supply for the RTC so that the time 

is not lost due to satellite resets, a connector to a separate board that houses the Ethernet 

port for NFS, and an additional header for power, ground, and data pins for use with 

mission-specific daughter boards. 

 

Figure 13. Kesler v2 Interface Board for RACE and ARMADILLO Missions (left: 

bottom of board, right: top of board) 
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3.2.3 Storage 

Mounted onto the Kesler board is an SD card acting as the main storage unit for 

the satellite. All of the mission and health data will be stored on the 2 GB SD card. A 

data generation budget was created for each mission to ensure that 2 GB of storage would 

suffice for the data generated throughout that entire mission (Texas Spacecraft 

Laboratory 2011). The budget outlines the types of files that are expected to be produced 

by each subsystem, the rate of generation, the total size of the files for the whole mission, 

and the allotted storage capacity of the SD card for that type of file. 

 As the health data is overwritten after a pre-described amount of time and the 

beacons transmitted periodically to ground (containing a small sample of the spacecraft’s 

health data) are not stored on-board, the main concern in terms of reaching the maximum 

limit for data storage are the payloads. For ARMADILLO, the main instrument requires 2 

kB for one day for a rate of one particle strike on the detector unit per day, totaling 360 

kB of data for a complete mission lifetime of 180 days. For the FOTON instrument, with 

the high-end expected value of 100 occultations per day, the amount of data generated for 

the entire mission is estimated at just over 322 MB.  With this amount of mission data, 

the health data log files, the pre-loaded mission script files, and the images generated by 

the camera, the expected maximum data generated for the ARMADILLO mission is 1.31 

GB, which is well below the limit of 2 GB for on-board storage. The ground station will 

also have the capability to remove files from the SD card during operation if it is deemed 

necessary. 

 A telemetry budget was created by the Communications team to determine the 

expected downlink rate. Some of the values and estimates included in the analysis were 

based on the results from the FASTRAC missions but were slightly improved based on 

the upgrade of hardware for TSLs’ current missions. The expected downlink rate at a 

baud rate of 9600 bps for the ARMADILLO mission is approximately 234 kB per pass 

(Texas Spacecraft Laboratory 2011).  

 Sub-directories will be created on the SD card to organize the different types of 

data produced. If need be, the ground station will have access to commands that can 
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modify the state of the SD card on the satellite in-orbit, such as mounting and un-

mounting, reformatting, and partitioning.   

3.3 C&DH HARDWARE ARCHITECTURE 

The C&DH system used for Bevo-2, RACE, and ARMADILLO is a centralized 

architecture, with the SOM flight computer acting as the central processor for the entire 

satellite. A centralized architecture involves all subsystems of the satellite having a point-

to-point interface with only the C&DH subsystem. Therefore, all data and commands are 

sent only between the C&DH system and one other subsystem. This architecture is 

suitable for satellite systems with a small number of distinct subsystems. Employing this 

architecture is reliable in the sense that if one system fails during operations, the effect of 

the failure is minimized as there is no direct interface with the other systems other than 

C&DH. Therefore, the integrity of the separate interfaces between the C&DH and the 

other subsystems will remain intact. Figure 14 is a block diagram showing the C&DH 

hardware architecture and the various interfaces between the C&DH system and the 

subsystem components.  

 

Figure 14. C&DH Main Hardware Components and Interfaces with Spacecraft 

Subsystems 
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One significant attribute of the overall satellite hardware architecture is that the 

ADC subsystem uses a separate computer for its attitude control-related calculations. 

This design choice was made as the ADC system of the spacecraft is intended to be a 

bolt-on, autonomous GN&C module that can be used on current and future TSL CubeSat 

missions, similar to the C&DH system. In addition, the algorithms for the attitude sensing 

and control are calculation-intensive. Therefore, being able to use a second embedded 

computer for the GN&C module and still being able to remain within the satellite’s 

allowable power and mass budgets is advantageous. The GN&C embedded computer also 

uses the LPC3250 based on the results of a similar flight computer trade study for the 

ADC system. The ADC computer is attached to the Kraken interface board as shown in 

Figure 15.  

 

Figure 15. ADC Computer System - Kraken Interface Board and LPC3250 Computer 

3.4 COMPARISON BETWEEN PAST C&DH SYSTEMS AND CURRENT SYSTEM 

The development process of the C&DH system described in this thesis did not 

begin from scratch. The TSL had designed, implemented, and validated C&DH systems 

for several past missions, some of which have been launched. Namely, the TSL has built 

three satellites that have flown over the years: Sara Lily and Emma as part of the 

FASTRAC mission, and Bevo-1. The knowledge, design work and lessons learned 

inherited from the documentation and personnel involved with these past missions were 

extremely helpful in the development of the C&DH module for the current missions. One 
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of the initial steps involved in designing the current system was an analysis of the past 

C&DH hardware architectures and FSW design for these two missions. An overview of 

the C&DH systems for FASTRAC and Bevo-1 are presented in this section. In addition, a 

discussion of what design details were reused for Bevo-2, RACE, and ARMADILLO is 

also outlined.  

3.4.1 FASTRAC 

The FASTRAC C&DH system encompassed a distributed architecture based on 

an architectural design developed by Santa Clara University (SCU). A distributed 

architecture involves having several processors that divide the computing responsibilities 

of the satellite and communicate with each other. Figure 16 is a diagram of the main 

components of the FASTRAC C&DH architecture. 

 

Figure 16. C&DH Architecture of FASTRAC Satellites (Smith 2008) 

The FASTRAC C&DH system is comprised of four AVR-SAT microcontroller 

systems developed by SCU, each of which consists of one Atmel AVR Atmega128 8-bit 

RISC microcontroller running at 16MHz (Smith 2008). As shown on the diagram, each 
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AVR microcontroller system manages a separate subsystem of the satellite: 

communications, power, GPS, and depending on the satellite (Sara Lily or Emma), the 

thruster or IMU. The AVR-SAT contains 53 general-purpose I/O lines, two Universal 

Synchronous-Asynchronous Receiver/Transmitters (USARTs), an 8-channel, 10-bit 

analog-to-digital converter, a Serial Peripheral Interface (SPI), and a 2-wire (I2C) bus 

(Smith 2008). The four AVRs share data through an I2C bus shown by the green line in 

Figure 16. An SPI bus is used to connect a 128MB flash memory MultiMediaCard 

(MMC) to each AVR for data storage. All top-level software for the satellites was written 

in the C language by the FASTRAC team, and flashed onto a 4KB EEPROM on each 

AVR. 

 Based on the success of the FASTRAC mission, this distributed C&DH system 

architecture by SCU has proven to be effective for the FASTRAC mission. Using a 

system designed by a third-party and customizing it to the specific mission’s needs 

reduced the mission development costs. This method also saved in component costs as 

the SCU system is comprised of COTS parts. During the design phase, the distributed 

architecture in particular seemed advantageous as the communications interfaces were 

well defined, and this simplified test procedures such as GPS simulations and crosslink 

tests. As the mission involved crosslinking information between Sara Lily and Emma, the 

crosslink design and execution was made easier as both satellites had the same distributed 

architecture. It also was thought that C&DH testing would be simplified as the distributed 

architecture clearly deconstructed the system into distinct modules whose software could 

be written and tested individually and in any order.  

 However, in reality, the FASTRAC team discovered that the distributed 

architecture did not prove to be the effective choice as previously determined. The main 

disadvantage of this architecture was in terms of internal data sharing for the satellite. 

The subsystems required information from each other in order to perform their respective 

functions. The software design was complicated by the fact that any data flow from 

subsystem to subsystem for even the simplest functions had to be sent and received over 

the common I2C bus, where each AVR-SAT was designated a master. This characteristic 
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introduced timing and sharing complexities, causing non-received data and lockup.  

Because of this subsystem interdependence, contrary to prior belief, this design did not 

promote quick, parallel development of the subsystems’ software. 

 The selection of this architecture for the current 3U CubeSat missions in the TSL 

would have presented significant challenges. The subsystems and mission phases for 

Bevo-2, RACE, and ARMADILLO are more complex than those of FASTRAC, thus the 

data sharing between modules would have been even more difficult to manage. In 

addition, multiple AVRs required for the separate processors would have been difficult to 

fit within the volume constraints of a 3U CubeSat. 

3.4.2 Bevo-1 

The C&DH system for Bevo-1 encompassed a centralized architecture with a 

SOM flight computer acting as the central processor for the entire satellite, which is the 

same architecture as the current TSL missions. The flight computer consisted of a 

Bluetechnix CM-BF537 core module, shown in Figure 17. 

 

Figure 17. CM-BF537 Core Module (Blue Technix 2012) 

Small in size (3.2 cm x 3.6 cm), this 600 MHz processor has 32 MB of SDRAM, 

4 MB of FLASH ROM, and has peripheral connection capabilities for SPI, I2C, UART, 

and SPORT. A detailed block diagram of the module is shown in Figure 18. 
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Figure 18. Block Diagram of CM-BF537 (Blue Technix 2012) 

 This microcontroller supports a Linux distribution called μClinux-dist, which is a 

software package containing a customized build system for the Linux kernel, several 

patches, and a large collection of userspace applications and tools (Bhatti 2008). This 

package is configured and built into a kernel with a root file system. The flight code, 

named ‘Blackbird’, is the TSL’s first attempt at addressing the need of having reusable 

satellite software. The high-level software is written in C++ for a Linux runtime 

environment, which is loaded with μClinux (Bhatti 2008). 

 The design goal of Blackbird to act as reusable flight software for TSL is a 

success for the most part. The current C&DH architecture is based off of Bevo-1. The 

design of having one main flight processor that manages all the operations of the satellite 

is reused, as well as writing the C&DH software in C++ and running it in a Linux 

environment. The software architecture consisting of a state machine where the satellite 

can transition between several operating modes and having separate threads that can be 

activated or deactivated is also reused for the FSW explained in this thesis.  

 However, some architectural details are not able to be reused for the current 

missions, as the Bevo-1 C&DH design has several limitations. First of all, the 
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BlueTechnix processor was not re-selected as the flight computer as it is found to have a 

limited number of interfaces that would not suffice for the more complex Bevo-2, RACE, 

and ARMADILLO missions. Secondly, this microcontroller only supports the μClinux 

distribution, and not the full Linux kernel. There are only a limited number of differences 

between μClinux and Linux systems, but the major difference is that the former has no 

memory management. With this lack of support, no memory protection is offered, thus 

corruption is more likely and more difficult to diagnose. This difference, along with 

several other minor differences in the kernel, influenced the selection of a microcontroller 

using the full Linux distribution. This way, the flight computer for the current C&DH 

system can be reused on a variety of future missions.  

 Secondly, the FSW on Bevo-1 was programmed to be inherently tailored to the 

specific hardware of the satellite. The flight software could not have been easily 

separated as reusable software modules as many of the subsystem functions were 

interconnected. As the delivery deadline approached, there was less focus on 

implementing the flight software in a reusable manner, and it became specifically coded 

to be functional for the Bevo-1 mission (Imken 2011). 

 Another change in the development process of the C&DH system from Bevo-1 to 

the current missions pertains to the FSW implementation philosophy. One pair of team 

members was responsible for developing all of the software for the mission (Johl and 

Imken 2012). This was inefficient in terms of development time. In addition, knowledge 

gained from developing Bevo-1 was lost with the departure of the small software team 

from the TSL. The members responsible for implementing most of the FSW for Bevo-1 

are no longer with the lab. Thus, the TSL had no prior experience with FSW to use for 

the current missions. Currently, the coding responsibilities are purposely divided between 

the subsystems. Furthermore, there is more of an emphasis on documenting and logging 

design decisions, troubleshooting methods, and software bugs. The availability of the 

knowledge from these past satellite development experiences provided a solid foundation 

for the system design of the current missions. 
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Chapter 4: Software Architecture and Development Infrastructure 

Developing the software for a CubeSat mission is a large and complex project. In 

order to complete the development in a timely manner and to minimize software failure 

due to rushed code development, the task of writing software is divided among each 

group of students working on a particular subsystem. More information on this division 

of software duties will be provided in this chapter. However, as the C&DH subsystem is 

responsible for all commands and telemetry to and from the spacecraft and the ground 

station, the C&DH team spends a great deal of time developing software. Hookem 

excludes the ADC software that will be loaded onto the ADC computer connected to the 

Kraken interface board. The party responsible for the compilation of Hookem is the 

C&DH subsystem team. Writing the code for the C&DH subsystem is a large task in 

itself, but the C&DH team is also responsible for maintaining and compiling all flight 

software to be run on the satellite’s main computer. As with all large software projects, 

there is much planning and designing that must occur before beginning to write the code. 

This not only includes creating the software architecture while taking into consideration 

the lessons from past TSL missions, but also setting up an appropriate development 

infrastructure.  

In this thesis, a clear distinction is made between the software architecture and the 

software development infrastructure. Software architecture is a common term used in 

software engineering. A general definition of software architecture is the structure of 

structures of a software system that consists of entities or components, and the 

relationships between them (Franchitti 2011). In this definition, a software component is 

an encapsulated part of the software system, acting as one of many building blocks for 

the structure of the system (Franchitti 2011) such as classes, objects, or modules. 

In contrast, the software development infrastructure as described in this thesis 

includes all practices that are put in place for the C&DH team that facilitates the 

development of the FSW. Examples of strategies and techniques incorporated into the 

software development infrastructure include coding guidelines, flight software releases, 

and subversion control. Therefore, the software infrastructure includes practices that aid 
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in developing software efficiently and correctly, whereas the software architecture is the 

organization of the software system itself, along with its components, their relationships 

to themselves and to the environment (Eeles 2006).  

Software infrastructure and software architecture are important definitions in the 

field of software engineering. The C&DH subsystem has put an emphasis on using 

practices and techniques learned from research and courses in software engineering when 

developing the software for the current missions. This is a change from the approach 

taken by the C&DH team from past missions in the TSL. Since a major design goal was 

to design the subsystem in a manner that allowed the architecture to be re-used for future 

missions, it was important to put into practice correct software engineering principles and 

processes. This would ensure the production of quality software that satisfies the 

requirements of the subsystem, and that can be used as a solid base from which future 

members of the TSL can design the C&DH software for the next generation of missions.  

The flight software architecture and the flight software development infrastructure 

are discussed in this chapter.  

4.1 SOFTWARE ARCHITECTURE 

Well-defined and planned software architecture is an important attribute of the 

development for the FSW. Before discussing the details of the software architecture used 

for the CubeSat missions in the TSL, it is important to understand the difference between 

the software architecture and the software design. Software architecture, as presented 

earlier, is the process of structuring a software system that consists of entities or 

components, and the relationships between them. According to Perry and Wolf (Perry 

and Wolf 1992), software design involves the modularization and interfaces of the design 

elements, and the algorithms, procedures, and data types needed to satisfy the 

requirements (Eden and Kazman 2003). Therefore, software design is more concerned 

with the lower level detailed-design issues rather than architectural-design issues. The 

implementation of the software program then follows, which is writing the code based off 

the software architecture and design. The boundaries between the definitions of these 
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three concepts are often blurred, yet present. A diagram that illustrates the gradual 

distinction between architecture, design and implementation is shown in Figure 19. 

 

Figure 19. Common View Distinction between Software Architecture, Design and 

Implementation (Eden and Kazman 2003) 

The remainder of this chapter presents the TSL’s chosen FSW architecture while 

the subsequent chapter will describe the detailed design and implementation of the FSW. 

4.1.1 Architecture Goals 

The development of the software architecture begins with the problem definition 

that the software must address. For this project, the flight software must satisfy mission-

specific requirements and the common C&DH requirements described in Chapter 2.  

The software architecture must also address the requirements of the various 

stakeholders while handling the functional and quality requirements (Brumbaugh 2012). 

A stakeholder is defined as an individual, team or organization with interests in the 

system (Eeles 2006). The stakeholders in this case are the other members of the TSL 

responsible for the remaining subsystems of the satellite, the TSL as a whole, and the 

organization responsible for the payload. The needs of these stakeholders drive the 

C&DH system to have two main non-functional requirements/goals in hand: modularity 

and reusability. Achieving modularity in the C&DH system is important to the members 

working on the other CubeSat subsystems as they do not want to be concerned with the 

implementation of the C&DH software. Similarly, the C&DH team members do not want 

to be concerned with the implementation of the other subsystem’s software. Reusability 
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is an important characteristic of the architecture to the TSL as a whole for reasons 

discussed previously; the more reusable the code is, the more time will be saved for 

software development for future missions. These non-functional requirements are 

significant in the software architecture development. 

4.1.1.1 Modularity 

The term modularity is used loosely, and has several definitions in the field of 

engineering. For a general definition in the software engineering sense, a software system 

is modular if components, or parts of the software, can easily be identified and replaced 

(Parallab, Bergen Center for Computational Science 2004). The modules can then 

interact through a defined interface, outlining the data required by and provided by each 

module. Focusing on modularity in the software architecture promotes software 

reusability, which will be discussed in the next section. 

The TSL has implemented the concept of modularity in several layers of its 

hardware design. The hardware architecture of Bevo-2, RACE, and ARMADILLO 

structures are very similar. The structural layouts of Bevo-2 and ARMADILLO consist of 

three modules, known as the Service module, the GNC module, and the Payload module.  

 

Figure 20. Modular View of ARMADILLO Satellite 
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Each module of the satellite serves a specific purpose. With this design, each 

module can be developed simultaneously with minimal dependence on the other modules. 

Two of these modules, the Service and the GNC, are used for each satellite with only 

minimal necessary changes. It was decided to mimic this concept of modularity in the 

software architecture as well so that subsystems as a whole, both hardware and software, 

could be outright replaced by an entirely different version of the subsystem. Since all 

control and data transfer is routed through the C&DH system, a functioning subsystem 

comprising of the hardware components and the software necessary to operate it 

accordingly can then be completely replaced without affecting the rest of the satellite. 

For the flight software, the term modularity is used to describe how the software 

for the satellites is separated into black boxes, or modules, the contents of which are only 

added to or modified by the subsystem in ownership of that part of code. There is one 

module per subsystem, and Hookem is then composed of all the modules compiled 

together into one executable. Figure 21 illustrates the different modules that comprise 

Hookem for the current missions.  

 

Figure 21. Software Modules within Hookem 
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The diagram above shows the C&DH subsystem in the center, interacting with all 

other subsystems of the satellite, indicated by the bidirectional arrows between modules. 

However, all subsystems, excluding the C&DH, do not interact with each other. For 

example, the PDD requires the time in the form of a timestamp which will be recorded 

along with the data when an impact is detected. In this event, the PDD will not request 

the time directly from the GPS. Rather, it will query the C&DH system for the time, 

which will in turn ping the GPS, and return the timestamp to the PDD instrument. This 

structure allows for only one software interface between each module and the C&DH.  

An example of subsystem modularity can be found by observing the GPS receiver 

subsystem for the current missions. Bevo-2 uses NASA’s single frequency DRAGON 

GPS receiver for the mission. The ARMADILLO mission, however, will fly the dual 

frequency FOTON GPS receiver which was developed by the Radio Navigation Lab at 

UT-Austin. Even though the FOTON will fulfill the mission’s secondary objective of 

collecting GPS radio occultation measurements, it will also provide the same GPS 

receiver functionalities the DRAGON will provide for the Bevo-2 mission, such as GPS 

time, position and velocity measurements. From the perspective of the C&DH team, the 

commands sent to the GPS receiver subsystem will be functionally similar for both the 

DRAGON and the FOTON. The C&DH will also be able to acquire the data from the 

GPS and downlink it in the same fashion for data post-processing. There may be added 

capabilities for either receiver that the other does not exhibit, such as the FOTON being 

able to acquire GPS L2 frequency data in addition to L1 data. Therefore, the C&DH team 

may decide to modify the commands that can be sent to the FOTON, but they both would 

maintain the same functional software interface with the C&DH. This type of subsystem 

modularity is also valuable in the situation where the hardware requires an upgrade to a 

newer version. Inevitably, the software for that specific subsystem will need to be 

modified. However, no other subsystem software, including the C&DH software that 

performs the function call, will require any changes. An example of this has already 

occurred in the lab, as the UHF/VHF radio from AstroDev has been upgraded from one 

version (the Lithium) to a more recent version (the Helium) in the current development 
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cycle of the satellites. Another example is the swapping of the ClydeSpace 3U Electrical 

Power Supply used for Bevo-2 with the GomSpace NanoPower P-Series power supply 

for ARMADILLO and RACE. For this change in hardware, only the EPS low-level code 

needs to be modified, and the FSW is able to call the high-level EPS functions in the 

same manner for all satellites. 

There are several more benefits associated with software modularity in addition to 

subsystem interchangeability. One of these benefits is the parallel development of the 

FSW. Complete subsystems can be developed in parallel without interdependencies (Johl 

and Imken 2012). This approach aids in dealing with constraints associated with a 

student-run lab such as lack of manpower. Subsystems can be developed at different 

rates, allowing re-allocation of resources such as assigning people to a different 

subsystem that requires more manpower for completion. Another benefit is that more 

students gain experience in developing skills in software engineering and software 

implementation. Each subsystem is responsible for the software required to meet its 

respective requirements. 

4.1.1.2 Reusability 

Software architecture helps set the foundation for the system to obtain its non-

functional requirements. As the TSL is working on two missions concurrently, a non-

functional requirement to consider in developing the flight software architecture is 

reusability. Reusability is a term that is commonly used not only in software engineering, 

but also systems engineering. Bevo-2, RACE, and ARMADILLO, like other aerospace 

projects, are complex systems that require a group of engineers to invest their time and 

effort into their development. However, resource constraints are always an obstacle in the 

development of CubeSat missions in the TSL. There are several examples of reusability 

implemented in different stages of the TSL CubeSat development process. The most 

prevalent example of reusability is the selection of hardware between the three missions. 

Even though the current missions have different mission objectives, all the missions have 

the same requirements in terms of computing needs and ground communication 

capabilities. Thus, it was decided in the design process and component trade studies that 
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the same Phytec LPC3250 flight computer and the same Helium 100 UHF/VHF radio 

could be used for all satellites. Therefore, two thirds of the bus is nearly identical and 

interchangeable between the missions, saving significant development time and costs. 

Another example is the application of reusability in the production of mission documents 

(Brumbaugh 2012). Due to the complex nature of satellite systems, it is important to keep 

thorough and well-organized documentation during all phases of the development cycle. 

Pre-existing documents, such as requirements, test plans, and interface control 

documents, can be used by future members of the TSL as templates. By applying 

reusability techniques when constructing CubeSats, the TSL is able to reduce the 

engineering effort required to develop a new system.  

Reusability techniques play a large role in the software development of the 

satellites as well, and software engineers are very familiar with this term. Software 

reusability, as per the definition by the Institute of Electrical and Electronics Engineers 

(IEEE), is the degree to which an asset can be used in more than one software system, or 

in building other assets (IEEE Computer Society 2004). An asset can either be reusable 

software or software knowledge. Reusability is the quality of a piece of software that 

allows it to be used again by another application in the full, partial or modified version of 

itself (Parallab, Bergen Center for Computational Science 2004). Writing code with a 

design goal of reusability is generally good practice, as this practice will diminish the 

time and effort required to produce future code (Oualline 2003). Reusable software, 

including the software design, functional specifications, and code, is created with this 

design goal in mind. Attention is required to the choice of software architecture to allow 

for successful software reusability.  

It was a very easy decision to develop the flight software for the current missions 

with software reusability in mind, as there are several advantages from this: 

 

 Increased productivity 

Reusing software allows for a quicker rate for software development. Pre-existing 

software components that have been fully implemented, tested, and documented can 
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essentially be “plugged-in” to the system, saving the developer time that would have been 

required to create new software. 

 

 Shorter Development Time 

The development of software for CubeSat systems is a lengthy process that takes 

up a significant portion of the overall development schedule. Any technique or strategy 

that can save time for software development while producing the same desired results 

is considered an asset and should be further investigated. 

 

 Increased software quality 

Any FSW that is being reused in the TSL would have had flight heritage from 

previous missions. This means that this piece of software has been proven to properly 

function. The lab puts an emphasis on documentation, which would result in the 

implementation, testing, and specification being easily accessible and comprehensible by 

members of the TSL other than the creator. 

 

 Better leverage of engineering knowledge and skills 

During development of future missions in the lab, more engineering resources can 

be applied to other aspects of the mission rather than to re-writing existing software. 

There would be no need to re-invent existing, functional code, which would result in 

savings on overall development time and effort.  

Reusability can be further decomposed into two types: planned reuse and 

unplanned reuse. In unplanned reuse, also known as the opportunistic approach to 

software reuse, some or all components of software is reused from a software system that 

was not originally intended to be re-used (Jansen, et al. 2008). However, the software 

developer has knowledge of previously existing software and identifies it as being 

applicable to the current software system. In contrast, planned reuse, as stated in the term 

itself, involves planning for reusability from the beginning of the development phase. 

This latter type of reusability is favored over the former since a more planned approach 
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helps in identifying the impact of reusing software on the system beforehand (Fortune 

2009). For example, with planned reuse, an assessment can be made on the effects of 

reusability on testing strategies, design standards, and on the quality and integrity of the 

software (Lam 1997).  

Hookem is based on planned reusable techniques so that future missions in the 

TSL will benefit from the engineering effort and knowledge gained from these projects. 

With several future missions already in the conceptual phase, designing reusable flight 

software is vital to the continued success of the lab in producing functional CubeSats.  

4.1.1.3 Promotion of Reliability through Modularity 

Selecting a software architecture that is modular in nature is an effective way of 

building software that has reusable parts. The software is divided into well-defined 

modules in such a way that some of them can be reused in future applications with 

entirely different mission objectives. The black-box, modular approach taken in Hookem 

promotes the reusability and replacement of subsystems of the satellite as a whole (both 

in hardware and software). The reuse of these software modules in particular is desirable 

as software costs are usually based on the number of lines of code that must be written. 

Therefore, if software modules can be reused, this minimizes new code development 

costs and leaves only the integration and system level costs as major contributors (Larson 

and Wertz 2006). In conclusion, modularity and reusability are valuable software 

architectural goals to strive for that go hand in hand.  

4.1.2 Architectural Patterns 

A critical step in developing any large software system is defining its software 

architecture. It serves as the blueprint that helps the system meet its functional and non-

functional requirements. Most system architectures are formed from high-level principles 

and patterns that are commonly used in many software systems. These principles and 

patterns are known as architectural patterns, or architectural styles. Architectural styles 

are groups of design decisions and constraints which can be applied to a system to induce 

chosen qualities (Fielding 2000). Each style has its own key principles, benefits, and 
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design rules that distinguish it from other styles. In addition, architectural styles may 

have qualities that are used in various aspects of applications (Microsoft 2009). For 

example, there are some architectural styles, such as service-oriented architecture, that 

describe a software communication design, whereas there are other styles, such as object-

oriented or layered architecture, that describe structure designs. Therefore, software 

architecture usually combines several architectural styles in its design to meet its 

requirements.  

Using architectural styles is good practice in software engineering as the user 

benefits in several ways. First, using architectural styles is a form of software reusability 

and therefore provides the same advantages as the latter concept. These architectural 

patterns are recurring application-independent rules and decisions. Thus, it is well known 

engineering knowledge that can be exploited by the software developer to facilitate the 

software development phase (Garlan, Allen and Ockerbloom 2009). An architectural 

pattern provides the user with a routine solution to certain types of common software 

problems. Another advantage is the high level of abstraction architectural styles provide 

to large, complex software systems. The software developer can look at the software 

problem in hand and its requirements at a high level, and then make top-level software 

design decisions based on selecting styles that fit the system. In other words, architectural 

styles provide guidance on how to design a system based on the requirements, rather than 

having the difficult engineering task of starting from scratch (Fielding 2000).      

The architectural styles used for Hookem were selected based on the opportunity 

to inherit the code from Blackbird. As the C&DH hardware architecture was to remain 

the same for the current missions as it was for Bevo-1, it made the most sense to keep the 

same software architecture as well. The Blackbird FSW is fully functional and tested, and 

therefore provided a robust starting point for the development of Hookem. Blackbird was 

designed with the same architectural requirements as the current missions, including 

modularity and reusability. Therefore, even though Bevo-1 was relatively simpler in its 

mission objectives than the current missions, the C&DH team decided to follow the same 

architectural style for Hookem as was used for Blackbird. One minor shortcoming in the 
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Blackbird system is that the documentation is lacking. This may have been due to the 

lack of manpower for the C&DH system or a rushed delivery schedule. This is one key 

attribute that the current C&DH team is trying to improve, and is a motivation behind this 

thesis.  

The software architecture for Hookem uses two architectural styles in its design, 

known as component-based and object-oriented. A description of these two styles and 

examples of how they were used in Hookem are included in the following sections.  

4.1.2.1 Component-Based Architectural Style 

One style that was used in the architecture for Hookem is called Component-

Based Software engineering (CBSE). CBSE is a software engineering approach that 

concentrates on decomposing the software system into individual functional components, 

with well-defined communication interfaces between them. This style type may have 

similarities to the object-oriented architectural style, which is described in the next 

section, but the two styles differ in several ways. CBSE is practiced at a higher level of 

abstraction than the object-oriented style, and it does not contain principles regarding 

communication protocols or shared states (Microsoft 2009). Another difference is that in 

the object-oriented style, the software objects and their interactions model the real world, 

and can be thought of as nouns and verbs respectively (Phytec 2011). In contrast, for 

CBSE, this need not be the case; components do not need to follow this restriction.   

The main principles for CBSE involve: 

 Reusability 

Most components are designed to be reused in different applications, but some 

components may be designed for one specific application and purpose only. 

 Replaceability 

Components can be substituted by other components, and are non-context 

specific. 

 Encapsulation 
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Components do not reveal details of its internal functioning, variables or  states. 

They only allow the user access to their interfaces. 

 Independence 

Components have minimal dependence on other components of the system. 

Newer versions and deployments of the components can be released without affecting the 

other components of the system.  

The CBSE architectural style was implemented in Hookem in the form of the 

composition and interaction of the various subsystems of the satellite. As shown in Figure 

21, the subsystems represent the components of the software system. The interfaces 

between components are represented by the bidirectional arrows. As mentioned earlier, 

all subsystems interface with only the C&DH subsystem. Each software interface 

between the subsystem and the C&DH consists of a set of functions that the C&DH is 

able to call in order to command that subsystem.  

Using this architectural style helps in meeting the two non-functional 

requirements for the flight software. It provides modularity in the form of independent 

software components for each subsystem. Reusability is achieved by being able to 

interchange and replace the individual software modules in the current system as needed, 

and by having the capability of building a new system with a combination of existing 

modules and newly developed modules.  

4.1.2.2 Object-Oriented Architectural Style 

Another style that was used in the architecture for Hookem is called Object-

Oriented (O-O). This is a well-known and commonly used style among software 

developers. The O-O architectural style involves dividing the system into object instances 

(Microsoft 2009). Each object contains its own relevant data and behavioral properties. 

Objects are independent, discrete, and loosely coupled, and communication between 

objects is performed through accessing properties of other objects, and by sending and 

receiving data (Microsoft 2009).  

There are four main principles that describe the O-O architectural style: 
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 Abstraction 

The complex software system is divided into components that are easier to 

comprehend. It involves reducing a part of the system to its essential characteristics as a 

component, and to produce general operations that support it.   

 Composition 

Objects can be composed of several other objects, which can be hidden or 

exposed to the other classes of objects.  

 Encapsulation 

Similar to the principle for CBSE, objects do not reveal details of their internal 

functioning, variables or states. They only allow other objects access to their interfaces. 

 Polymorphism 

The behavior of an object can be overridden by implementing new operations that 

are interchangeable with the pre-existing operations for that object.  

 

The object-oriented (O-O) architectural programming style has been used 

extensively in the architecture of the software. The C&DH software has been written in 

C++, which supports object-oriented programming. Each subsystem team has written 

their low-level code in either C or C++, but they are required to provide a high-level C++ 

wrapper that includes all the functions that the C&DH is able to call. This wrapper acts as 

the interface between the two subsystems. Each C++ wrapper includes the commanding 

functions. Therefore each subsystem is represented as an object that interacts with the 

C&DH software. Figure 22 illustrates the interface between the C&DH software and the 

subsystem software. 
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Figure 22. Interface Object Software Interaction 

The block on the right side of the figure represents the low-level code for a 

subsystem. This is the code that directly interfaces with the physical hardware of that 

subsystem. The block on the left side of the figure represents the C&DH software entity 

of the FSW. The center block of the diagram is the subsystem component that acts as the 

interface between the C&DH software and the subsystem software. Complete 

functionality is provided through this interface, which is implemented by the respective 

subsystem in collaboration with the C&DH software. Not all of the functions included in 

this software layer may be used for a specific mission. However, it is still important that 

they exist, as these objects are to be used for other current missions and future missions.  

An example of an application of the O-O architectural pattern used in Hookem is 

given as follows. The C&DH system is responsible for monitoring the EPS battery 

voltage and using this information to control the state of the satellite. This is done by the 

C&DH software querying the EPS object for the voltage by calling the high-level 

function that does so in the C++ interface. Encapsulated in this function, the EPS calls a 

C function that communicates with the EPS hardware by reading in and parsing the data 

from the I2C line. The high-level function then converts the binary data to a float value 

and returns it to the C&DH system, which then uses this information to perform an 

activity such as switching the satellite into Low Power mode if the voltage is below a 

limit, or writing the value into a beacon which will be transmitted later to the ground 

station. 
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4.2 SOFTWARE DEVELOPMENT INFRASTRUCTURE 

The following sections describe techniques and strategies as part of the software 

development infrastructure for the TSL. These practices and tools were put in place to 

facilitate and shorten the time for the development of the flight software. 

4.2.1 Interface Control Documents 

In order to govern the software interfaces between the C&DH system and the 

other subsystems, Interface Control Documents (ICD) were created. The template of 

these documents was created by a member of the C&DH team. One ICD is created for 

each subsystem, and the same ICD is used for all three missions. This is made possible by 

having a high-level source file for each subsystem that acts as a wrapper to the 

subsystem’s lower level functions. The sections of the ICD are completed by the lead 

member of that subsystem, and continually modified as further progress is made on the 

software. However, it is the shared responsibility of the C&DH team and that particular 

subsystem that the ICD is accurate, and correctly portrays the current version of that part 

of the FSW. 

Information included in the software ICDs first involves a high-level description 

of the electrical interface between the C&DH and the respective subsystem. For example, 

for the NVS subsystem, the mvBlueFOX camera interfaces with the C&DH through the 

USB port on the Kesler interface board, giving the camera the capability to take pictures 

and to run the star tracker algorithm. A list of all the individual source and header files 

that comprise the device driver software (the low-level subsystem code), and the 

subsystem interface software (high-level C++ wrapper) is provided, along with any test 

files that can be run to demonstrate the functionality of the subsystem but that are not 

included in the final FSW. For example, the NVS subsystem has the high-level C++ 

wrapper named camera.cpp with camera.h as the header file, but its low-level device 

software includes several header files: mvDeviceManager.h, mvDriverBaseEnum.h, 

mvIMPACT_acquire.h, and mvPropHandlingDataTypes.h. The test file that demonstrates 



51 

 

how to use the high-level functions of the camera, such as the ‘power on’ and the ‘take 

image’ functions is named camTest.cpp.  

camera.cpp
camera.h

mvIMPACT_acquire.h

camTest.cpp

mvDeviceManager.h

armadillo library

 

Figure 23. Software Organization Structure for the NVS Subsystem 

This test file is not a part of Hookem, but it is critical to the functional testing of 

the subsystem. Additionally, the specifications of every high-level function that 

comprises the subsystem interface software, with details on the input and output 

variables, are given in the ICD. Finally, the document also includes a section for 

describing the current progress of the software, and any current issues with the high-level 

interface software that the team should be aware of. The ICD is updated to reflect any 

revisions that are made to the subsystem software that affect the interface. The ICD then 

can be used as a valuable reference by the project team for the summary of the subsystem 

software interface details. 

4.2.2 Software Releases and Software Directories 

Hookem has gone through several versions, and has had multiple software 

releases over the development process for the current missions. Updates to the 



52 

 

functionality of the FSW continuously occur throughout this process. Even though the 

software is not yet in a state of full functionality, releases of the software have been made 

for several satellite test opportunities such as the high altitude balloon launch described in 

section 6.8.1, and demonstrations for design reviews. The TSL uses the open-source 

version control systems Subversion (SVN) and Git for documentation and software 

control. Git acts as the file sharing repository for the entire lab’s software, while SVN is 

used for all documentation, engineering drawings, tables, analyses and all other types of 

files.  

The satellite software created for the current mission exists in subdirectories of 

one main folder named Git. Within this root folder, there are three main subdirectories, 

picosat_cdh, picosat_adc, and picosat_cmn (Figure 24).  

 

git

picosat_cdh picosat_adcpicosat_cmn

Communication 
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Figure 24. Diagram of TSL's Software Source Code Organization 

The software written specifically for the ADC subsystem is kept in the 

picosat_adc folder, and executes on the LPC3250 connected to the Kraken board. The 
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software for all other subsystems is kept in the picosat_cdh folder, as it is compiled 

together and ran on the main flight C&DH computer on the Kesler board. The 

picosat_cmn folder is used to store all source files that are common to both the main 

FSW and ADC software. This includes implementations of communication protocols or 

standards, including NanoSatellite Protocol (NSP), UART, and I2C, as well as source 

code for creating and managing on-board databases used for logging received commands 

or satellite software errors.  

 Inside the picosat_cdh folder exists subdirectories for all subsystems. Within 

their subdirectory, there are sub-folders for each subsystem that contain their low-level 

subsystem software, as well as the high-level C++ interface. Each subsystem 

subsequently has a testing folder which contains any test source files. The picosat_cdh 

folder also contains a sub-directory which contains the C&DH software, as well as the 

file responsible for compiling all of the Hookem software into one executable. A recent 

change in the compilation process is that each subdirectory in picosat_cdh corresponding 

to a subsystem has their own make file which get called by the governing make file in 

order to compile the software. The software file structure through Git is important in 

keeping the software well organized and helps minimize file location problems arising 

between team members. Git also allows the software developers to revert back to 

previous versions of the software in case the current version no longer compiles and the 

issue is difficult to fix.  

4.2.3 Development Board 

Before the creation of the Kesler interface board, the flight computer was used in 

conjunction with a development board, the phyCORE-LPC3250 carrier board. This 

board, depicted in Figure 25, was provided by Phytec, along with the flight computer, as 

a component of a kit. 
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Figure 25. phyCORE-LPC3250 Carrier Board (Phytec 2013) 

The development board provides all the identical electrical interfaces, and 

input/output connections needed for the flight computer. The Kesler board was then 

custom-designed to mimic the electrical interfaces of the development board.  It is 

important when working with embedded systems to first work with a development board. 

Any bug in the software, or any components improperly wired to the board, could 

potentially damage the flight computer or other expensive connected subsystem 

hardware. Development boards, as opposed to the Kesler interface board, have some 

built-in circuit protection to limit the damage caused by these common mistakes. 

Additionally, bugs or failures experienced while using the development board simplifies 

the debugging process as all possible hardware bugs associated with the Kesler board are 

ruled out. 

4.2.4 Coding Standard 

Common coding style is a useful practice to apply to large software systems 

involving many code developers, such as the FSW for CubeSat missions. Proper coding 

techniques include writing functional specifications for each method or function in the 

source file, commenting lines of code, and proper indentation, making the structure of the 

program easier to read. Maintaining a uniform and well-structured naming convention for 
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variables, methods, and classes included in the C&DH components of the software is also 

important. Ideally, all the code that comprises the FSW should cohere as if one person 

had written all the code. Well-styled code will also reduce the time and effort needed 

from other TSL members to understand the code, or for future software developers trying 

to understand and reuse the code for their needs. The C&DH team implemented these 

coding style practices while developing their parts of the code. A guide was created in 

order to document these practices, and is followed by new TSL members to maintain the 

correct code structure even with TSL member turnover. Future missions in the TSL will 

implement these coding styles throughout the FSW development and test activities. 

  



56 

 

Chapter 5: Software Architecture and Development Infrastructure 

The previous chapter discussed the tools and strategies put in place in the TSL to 

simplify the process of writing the FSW. It also described several software architectural 

styles that were used to guide the FSW development. However, the software architecture 

is only a high-level abstraction of the software. There is still much work that must be 

done to transition from first having the system architecture selected, to generating a 

design for the FSW on a lower level, and then to finally commencing implementation. 

The C&DH team spent several months generating diagrams, including flow, class, and 

sequence diagrams before writing any code. These diagrams help to create a model of the 

software system that is an abstract representation of the system (Gomaa 2011).  

Modeling the FSW is good software engineering practice as it helps the developer 

better understand the system before delving into the details. Taking the time up front in 

creating diagrams to model the system saves time in the long run, as major software flaws 

or gaps are less likely to occur during implementation. Nonetheless, it is inevitable that 

modifications to the software design must occur while writing the code. However, being 

able to go back through the diagrams, identify the errors, and find ways to rectify them on 

paper saves time in comparison to changing the code directly and discovering that the 

changes do not work. Diagrams aids in the visualization of breaking down the larger 

software problem into implementable modules and determining their functional 

characteristics and relationships.  

In the early design stage, the C&DH team members originally created simple flow 

charts on Google Docs. It was decided that the next versions of these figures should be 

more detailed. Therefore, they were re-made in a program dedicated to generating 

graphical software models. There are currently several graphical modeling languages 

available for software-intensive systems. However, Unified Modeling Language (UML) 

is the industry standard graphical language and notation for object-oriented software 

applications. UML helps the user generate models used to describe the requirements, 

analysis and design of an object-oriented software system (Gomaa 2011). UML models 

were used in the design process of the C&DH part of the FSW, known as the Mission 
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Manager: the software written by the C&DH team that controls the satellite’s state and 

operations.  

This chapter is dedicated to presenting, with the help of the created UML 

drawings, information on the design and implementation of the C&DH FSW. First, the 

high-level description of the Mission Manager structure will be presented, introducing 

important concepts used in the FSW such as the mode manager, satellite operational 

modes, and activities. Then the static model of the flight software will be presented, 

outlining the system’s classes, attributes, operations, and relationships. Finally, the 

implementation of the FSW’s main functionalities are described, including command 

processing, telemetry management, beaconing, error and fault detection, satellite system 

recovery, ground pass prediction, and file management. 

5.1 C&DH FLIGHT SOFTWARE DESIGN 

 The C&DH part of the FSW is responsible for any decision-making and command 

execution that the satellite performs. In other words, the C&DH software determines how 

the satellite interacts with its environment through controlling its state and actions. If the 

C&DH software fails in orbit due to a software bug, then the satellite will have little to no 

functionality, as all other subsystem software is called by the C&DH software on the 

flight computer. Therefore, it is vital to mission success that the C&DH software design 

process is thoroughly executed, reviewed and tested to ensure that software bugs are 

minimized. It also helps to improve reliability if parts of the software have flight heritage. 

As mentioned in Chapter 4, the software architecture for Hookem was influenced by the 

flight software for Bevo-1. The following sections explain the design of the Hookem’s 

Mission Manager code by describing its main components. 

5.1.1 Definitions 

First, defining the terms for the different constituents of the C&DH flight 

software that will be used in the upcoming sections will help in the reader’s 

understanding. 
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 Mode: A mode is a particular state of the C&DH software system. For 

each mode, there are certain activities that are allowed to run.  

 Transition: A transition is a change from one mode to another that occurs 

according to specific rules.  

 Activity: An activity is a process that occurs in the context of one or more 

modes; an activity may be continuous (Looped Activity) or may run 

finitely (Activity). 

5.1.2 Mode Manager  

 The C&DH system is the only subsystem that can change the state of the satellite. 

Therefore, the C&DH flight software was designed as a state machine. The state machine 

is implemented as a class called ModeManager. The ModeManager governs the 

switching of states between satellite software states, called Modes (detailed in the 

following section). The switching between Modes is caused by a change in another entity 

of the software, the transition variable. The transition variable is implemented as an 

instance of the Transition class. The value of the transition variable is altered when 

certain conditions are met, causing the ModeManager to de-activate the current Mode 

that the satellite software is running in, and activate the new Mode based on the transition 

variable’s value.  

5.1.3 Modes 

 The ModeManager places the satellite into a certain state, which is designated as 

a Mode in the C&DH flight software. There are four Modes defined for the FSW that the 

satellite can transition into: Startup (SU), Automatic Command Execution (ACE), Low 

Power (LP) and Fail Safe (FS). The Mode class acts as the base class for four sub-classes, 

one for each specific mode mentioned. The state chart show in Figure 26 illustrates the 

different software Modes, and the conditions to be met that cause transitions between the 

Modes. The Modes are represented as the oval boxes in the figure. 
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Figure 26. State Diagram for Mode Manager of Hookem Software 

 The initialization of the state machine occurs once the flight computer has 

completed its boot sequence. The ModeManager then places the satellite into the Startup 

mode, where it can then transition between the other modes based on the transition 

variable. The transition variable is represented by the arrows (excluding the arrow from 

the initialization circle to the Startup mode as this transition is performed outside of the 

state machine) in Figure 26. The modes depicted in the figure are described in further 

detail in the subsequent sections. However, before explaining the various FSW modes, 

the Concept of Operations document is presented. 

5.1.3.1 Concept of Operations 

 One of the responsibilities of the C&DH team is to create and continuously 

modify the Concept of Operations (ConOps) documents for all three current missions. It 

is important for the software developers to understand what events need to take place, 

and in what order, to execute a successful mission. The ConOps document acts as a 

detailed summary of the mission in chronological order. In this document, each step of 
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each phase in the mission is defined. The ConOps documents for the current missions 

were generated early in the satellite development stage. However, as part of the flight 

software design process, the original ConOps was modified to incorporate more 

information related to the FSW and how each step in the mission phase will be 

accomplished. The modified document included descriptions of the software modes, and 

classifies the events that occur in each mode. For each step, the document contains details 

related to the subsystems involved, the power mode the satellite is in, the flight software 

mode the satellite is in, whether the step is operating autonomously or ground 

commanded, the criteria for the step to be considered complete, and the verification 

methods for this criterion. For each mission phase, the expected generated data, and the 

data sent to the ground is summarized. The mission timeline is continuously updated and 

refined as more knowledge is gained on the details of the overall mission, and the 

functionalities and operation of the subsystems. Flow charts for each of the four modes 

that provide a graphical representation of the events and/or activities that are executed in 

that mode are listed in the Concept of Operations document.  

5.1.3.2 Startup 

 The first mode that is entered automatically after the FSW is initiated is the 

Startup mode. It will also be automatically entered if the satellite reboots for any reason. 

However, some actions that occur when the satellite is in this mode will not re-occur in 

for this case. For example, the antennas will be deployed once the satellite enters the 

Startup mode for the first time, but will not re-deploy if there is a system reboot. 

Therefore, this mode is slightly different than the other three modes in that it is mostly 

composed of actions that are a part of a one-time initialization process that occurs when 

the satellite powers on for the first time. These actions will be skipped if it is determined 

in the software that the satellite had been previously in operation before the reboot. 

 The Startup mode is similar for all three missions, with some slight differences. 

For each mission, a flow chart was created for the Startup mode outlining the essential 

actions that must be performed in this mode. The flow chart generated for the Bevo-2 

mission is shown in Figure 27. The flow chart for the Bevo-2 Startup mode has been 
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shown instead of that for the ARMADILLO and RACE Startup modes as it is the most 

complex version of the mode.  

 For consistency, all flow charts shown in this thesis are for the modes for Bevo-2, 

and there are only small variations to those generated for the ARMADILLO and RACE 

missions. 

Figure 27. Flow Chart of Hookem's Startup Mode 

 

 The satellite receives power from the EPS batteries upon being launched from the 

ejector. This will allow the Hookem executable to start, and the satellite software to enter 

the Startup mode. The first actions taken in this mode are to turn on the Crosslink radio, 

initialize the camera to start taking pictures of AggieSat4, and to power on the DRAGON 

GPS receiver.  
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 Bevo-2 is launched into orbit from AggieSat4, and these two satellites will 

separate from each other over time. Therefore, any proximity operations such as 

crosslinking GPS data between the two satellites, and taking pictures of the other 

spacecraft, must occur as soon as possible. The crosslink radio needs to be turned on as 

soon as possible as it is used to crosslink data between the Bevo-2 satellite and the 

AggieSat4 satellite. A mission objective is to acquire images of AggieSat4 as it moves 

away from Bevo-2. Therefore, the C&DH software must power on and initialize the 

camera immediately. The software will then run a looped activity that continuously takes 

images at a set interval until halted.  

 Before the satellite can begin transmitting or receiving data, the radio antennas 

must first be deployed. Attempting any transmission over the radio without first 

deploying the antenna could damage the hardware. The C&DH system will send a 

command over the I2C line to deploy the four UHF/VHF antennas. A file is generated to 

signify a success if the antennas’ receive the signal to initiate deployment. The UHF/VHF 

radio will then be powered on, and be configured with the correct settings, such as the 

correct uplink and downlink frequencies, baud rates, call signs, and transmission power 

level. 

  Once the initial sequence of events has completed and a timeout period before 

spacecraft radio transmission has been observed, the C&DH can then start the beacon 

activity. This constitutes transmitting a short message formed by minimal health data 

over the radio. The health data activity is also commenced at this time. This activity 

queries the various subsystems that are currently powered on and collects the health data 

produced by their hardware components. The health data is collected into multiple 

circular buffers that are large enough to hold data generated during a pre-determined time 

interval, in the range of 1-2 hours. The contents of the buffers are dumped to a file and 

transmitted to ground upon receipt of a ground command to do so.  

 Throughout the sequence of events in the Startup mode, the battery voltage of the 

EPS system is monitored. If the power level falls below a pre-defined limit, the satellite 

will transition into Low Power mode automatically. Transitioning back into the Startup 
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mode occurs once the voltage returns above the limit. If the battery voltage is maintained 

at an allowable level, then the satellite will transition to ACE mode after all the actions 

have been accomplished. All transitions between modes will be logged on-board, and can 

be requested by the ground station if desired. 

5.1.3.3 Automatic Command Execution (ACE) 

 The ACE mode is the nominal mode of the satellite. This mode involves 

executing the mission scripts that contain the commands necessary for completion of the 

mission phases, and executing any commands that are uplinked by the ground station. 

The flow chart illustrating the main actions performed in ACE mode is shown in Figure 

28. 
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Figure 28. Flow Chart of Hookem's ACE Mode 

 The ACE mode, unlike the Startup mode, does not have a built-in sequence of 

actions to be performed (such as the initialization sequence described for the Startup 

mode). This mode consists entirely of activities that are activated or deactivated based on 

ground commands, or autonomously based on acquired mission or health data. The two 
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activities initialized in Startup mode, the beacon and the collection of health data, 

continue to run in ACE mode. There is one looped activity whose purpose is to listen for 

any uplink to the satellite. If the radio receives data, then another activity will be 

initialized to process the commands. Commands, or mission scripts, may either be 

uplinked from the ground or stored on the SD card before launch. Another action that 

gets performed in ACE mode is the execution of mission scripts. ACE mode executes 

commands by transferring them from the current mission script to a command buffer 

once the uplinked script is validated by the command file validator software component 

of the FSW (see section 5.3.9).  

A transition from ACE mode to Low Power mode occurs if the satellite’s battery 

voltage falls below the pre-set voltage limit, or if an error is detected that disrupts the 

execution of commands from the ground station or from the current mission script.  If the 

ModeManager initiates a transition to the LP mode, it will know which command in the 

mission script it was processing prior to interruption. Upon return to ACE mode, the 

software will continue with the interrupted command, unless otherwise directed from a 

ground command.   

5.1.3.4 Low Power 

 The LP mode is one of two safe modes for the satellite. LP mode is designed to be 

a catch-all for error scenarios aboard the satellite, including the spacecraft having 

insufficient power. Low Power mode allows the satellite to enter a mode where only 

necessary activities are performed and basic commands can be executed. Only essential 

subsystems will remain on when the satellite enters this mode. Health data for all 

powered subsystems continues to be gathered, and the beacon continues to be 

transmitted. The satellite will listen for any commands that are uplinked from the ground 

station. However, not all commands received from the ground will be executed by the 

spacecraft due to the limited power available. Therefore, the list of possible executable 

commands is restricted compared to that available for execution by ground command in 

ACE mode.  
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Figure 29. Flow Chart of Hookem's Low Power Mode 
 

 The Low Power mode can be entered from all of the other flight software modes. 

A transition from Startup mode or ACE mode to LP mode can occur when the satellite 

automatically determines that it does not have enough power. If the satellite is in ACE 

mode and the EPS voltage is below 6.5 V (initial approximation, this value may change 

before flight), the satellite will enter Low Power Mode. The voltage level that will cause 

a transition from Startup mode to LP mode will be slightly larger than that for 

transitioning from ACE, as it is undesirable for the satellite to start its initialization 

sequence if it is there will not be enough power to complete the process. The satellite will 

transition back into its previous mode when the EPS batteries have charged up to the 

appropriate level for nominal satellite operations. LP mode is designed to be power 

positive, meaning that any activities performed will use less power than what is being 
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generated by the solar panels. The current estimate for the appropriate voltage level to 

cause a transition back into ACE mode is 7.2 V. This is an approximation for the minimal 

voltage level required to perform scientific operations (operating PDD or FOTON). 

Again, the voltage level to transition back to Startup from LP will be slightly larger. A 

transition into LP mode can also occur if any error is autonomously detected by the 

satellite, if the satellite has no ground communication for a pre-determined length of time 

while in ACE, or if the spacecraft receives a command by the ground station. 

 The C&DH will also check for errors that are classified as critical. If the error 

detected that caused a transition to LP is critical, then the satellite will enter the FS mode. 

5.1.3.5 Fail Safe 

 The fourth mode for the flight software is Fail Safe mode. Fail Safe mode only 

runs the minimum necessary activities for spacecraft survival. The flow chart illustrating 

the operations performed in Fail Safe mode is shown in Figure 30. 
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Figure 30. Flow Chart of Hookem's Fail Safe Mode 

 Fail Safe mode is the only mode that the satellite must transition out of via a 

ground command. It will always transition out of Fail Safe into Low Power mode, and 

then can return to either Startup mode or ACE mode. The reason for this approach is to 

have one software mode which in the case of a critical error, all non-critical components 

will be powered off. The satellite will remain this way until the mission operators decide 

the errors have been resolved and it is safe to proceed with the mission. This mode 

essentially removes all autonomous capabilities of the satellite, with the exception of 

rebooting in the case of certain detected critical errors, thus preventing any undesired 

actions performed by the satellite. The mission operators also have the capability to 

command the satellite to transition into Fail Safe mode. FS mode is designed to be power 

positive in an average sense, since non-essential satellite subsystems are turned off and 

are not operating. The spacecraft can only transition out of FS mode through a ground 

command. 
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5.1.4 Activities 

 Activities are repeating actions that occur in the FSW. They are implemented as 

software threads within modes to perform specific tasks. The C&DH FSW has a class 

named Activity which has a child class named LoopedActivity. Both of these classes have 

one main method that includes the tasks for that activity. The Activity class will run 

through the tasks in this method once, whereas the LoopedActivity class’s method will be 

repeated at a specified interval based on one of its private variables. Activities can either 

be started and completed within one mode, or can be transitioned between modes without 

stopping.  

  The Activity class is essentially a wrapper class for multi-threading. Activities 

can either be started and completed within one mode, or can be transitioned between 

modes without stopping. Most of the actions depicted in the flowcharts for the ACE, Low 

Power and Fail Safe modes are implemented as Activities. This cannot be said for the 

Startup mode, as most of the tasks occurring in this mode need only to be executed once 

upon launch. 

 Hookem uses the POSIX threads Pthreads library for software multithreading. 

Pthreads is a standardized implementation of the C language threads programming 

interface as specified by the IEEE POSIX 1003 standard that emulates parallelism into 

the software (Barney 2013). A software program has potential parallelism when 

procedures can be executed in different orders without changing the result (Buttlar, 

Farrell and Nichols 1996). Multithreading exploits potential parallelism in the program, 

where the software developer defines the tasks, or threads, that can run concurrently. A 

thread is defined as an independent stream of instructions which gets scheduled to run by 

the operating system (Barney 2013). In other words, a set of lines of code that runs 

independently of the main program is a thread. The available Pthread library is included 

through a header and is incorporated into the FSW.  

 In the flight software, multithreading allows multiple Activity objects to run 

simultaneously in a mode by implementing them as threads. Multithreading permits the 

C&DH system to execute and monitor multiple subsystems simultaneously, such as 
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maintaining the watchdog, checking the voltage, and parsing health data from all the 

subsystems at the same time. Threading allows for activities involving different 

subsystems to make progress over the same time duration. It does so by enabling the 

processor and operating system to schedule threads so that every activity is completed. 

These events can all be executed in an independent manner. However, they can still 

interact with and are controlled through the FSW modes and the transition variable. All 

of these actions are performed within the single FSW executable.  

 Implementing multithreading in the C&DH software does have a downside, 

however. For a software developer who has never encountered this concept before, it 

takes time and effort to understand how to properly use it in the code. Multithreading was 

also used in for Bevo-1, and so a functioning software example used previously in the 

TSL existed prior to development for Bevo-2, RACE, and ARMADILLO. However, 

further reading into how to properly implement the standard was necessary. There are 

also common problems that occur in software programs through oversights or 

miscomprehension involving threading. A typical issue is mismanaging shared resources 

and data. This occurs when two threads try to access and modify the same memory space 

at the same time, which can cause a thread to hang. For example the activity for creating 

the beacon and the activity for collecting health data may both try to change the value of 

the transition variable simultaneously. In order to avoid this conflict, tools for proper 

thread synchronization must be applied, such as mutexes and conditions. A mutex 

variable acts as a mutually exclusive lock, allowing only the locking thread to access the 

data. For example, the activity creating the beacon will lock the EPS object when 

querying it for the battery voltage. If the activity for collecting health data tries to access 

the EPS during this time, it will only be able to query it after the beacon activity unlocks 

the object. A C++ wrapper for mutexes was created in the FSW to simplify its usage. A 

condition variable can be used by a calling thread to wait until a condition is met before 

executing its tasks. Meanwhile, other threads may use those resources the calling thread 

will use, and may signal the condition variable that the calling thread is waiting on. 
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5.2 CLASS DIAGRAM 

 Class diagrams are used to depict a static structural model of the software 

program. A class diagram for the FSW was formed as part of Hookem’s design process, 

and can be found in the Appendix. The diagram illustrates the classes that compose 

Hookem for Bevo-2, their attributes, operations and relationships (The University of 

British Columbia 2003). 

 The class at the top of the diagram is the ModeManager class. As mentioned 

earlier, the Mode class is a parent class to four child classes representing the four 

operational modes of the FSW. There exists an Activity class that acts as the parent class 

to LoopedActivity. The LoopedActivity class allows for a procedure to occur repeatedly 

after a sleep in the thread for the amount of seconds corresponding to its timeout 

attribute. The high level C++ classes for the subsystems are also shown in the class 

diagrams, labeled HeliumDriver, GPS, Xlink, EPSFunctions, and ADC, but with no class 

details. This encapsulation is done to symbolize the existence of these classes in Hookem, 

but also showing that they act as black boxes to the Mission Manager software.
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5.3 MAIN FUNCTIONALITIES OF FLIGHT SOFTWARE  

 In the following section, some of the main functionalities that define the C&DH 

FSW are described. These functionalities involve the high level responsibilities of the 

C&DH subsystem in order to maintain the operations of the satellite. Explanations are 

given for the C&DH software main attributes which include ground satellite command 

processing and communication methods, mission scripts, file management, beaconing, 

error handling and recording, command logging, automatic downlinking, telemetry 

management, startup sequence, and system recovery. 

5.3.1 Ground to Satellite Command Processing 

 One of the primary roles for the C&DH system is to handle and process 

commands received from the ground station. The C&DH system must be able to interpret 

uplinked commands, and perform the corresponding actions in a timely manner. For the 

satellites built in the TSL, the COM system is responsible for reading and writing any 

data sent to or from the satellite from the ground station. However, there is no command 

processing or interpretation performed by the COM system. Any data received by the 

radio will be written as is into a designated file stored on-board. It is then the C&DH 

system that opens this file and parses the data to acquire the desired commands. The 

command and data flow to the required subsystems for command execution and response 

is controlled by C&DH. 

 A large portion of the design of the FSW involved defining the ground station to 

satellite command processing architecture. This task was done in collaboration with the 

communications (COM) system, as the C&DH system relies on the COM system to 

receive and transmit data that is produced by the satellite with minimal loss, which allows 

for efficient and correct command processing. 

 There are several activities that each play a role in executing commands that are 

uplinked from the ground station, namely: CheckUplinkActivity, CommSchedulerActivity, 

MissionScriptActivity, InterruptBufferActivity, and OpsCommands. Each of these 

activities is a class in the FSW that has one object created upon execution, and that does 
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not get destroyed during runtime. Figure 31 illustrates a sequence diagram showing the 

interaction of these activities involved in the satellite’s execution of uplinked commands. 

In the figure, the boxes are instances of the classes involved in the execution of uplinked 

commands. The lifelines of the instances are drawn as dashed lines, and the messages 

between classes or messages to one class itself are represented by the arrows.  
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Start()
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Figure 31. Sequence Diagram for On-Board Command Processing 

 The CheckUplinkActivity (CUA) is the primary activity involved in querying the 

UHF/VHF radio to determine if any new input has been received from ground. Currently, 

this activity runs as a LoopedActivity, continuously calling a high-level method of the 

UHF/VHF radio software that will indicate if there is a new file sent by the ground 

station that contains commands. If it is determined that new data has been uplinked from 

the ground station, the activity will first halt the beacon, the mission script scheduler (the 

CommScheduler object in Figure 31), and the mission script executor (the mission script 

object in Figure 31). The CUA will then make a call to start the InterruptBufferActivity 

(IBA) thread. The CUA activity will re-activate the beacon and mission script-related 
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activities only after it receives a signal that the IBA thread has stopped running, or if no 

new commands have been received by the satellite for longer than a time period that is 

hard coded into the software. 

 The IBA thread is responsible for copying commands from a file into a temporary 

buffer, and for calling the thread that maps the commands into the corresponding satellite 

actions, known as OpsCommands (represented by the CommandMap object in the 

figure). This activity can be activated in two different manners: by the CUA in the 

manner mentioned previously to handle incoming commands from the ground, or by the 

CommandScheduler activity to execute time-stamped mission scripts. The first method is 

described here, whereas the second method is described in the Mission Scripts section 

5.3.2. Similar to both methods of activation is the copying of the commands from the file 

into a temporary buffer. 

  Any file uplinked from ground will have a header line at the beginning of the file 

which indicates whether the commands are to be executed immediately (known as a 

command file), to be treated as the contents of the new replacement mission script, or to 

be treated as contents of a time-stamped mission script for execution at a future time. 

When the IBA thread is started by the CUA object, the commands from the uplinked file 

are copied into the IBA object’s temporary buffer, and the header line is checked to 

determine the proceeding command processing steps. If the header indicates that the 

commands are to be executed immediately, the activity will then make one call for each 

command to the method of the CommandMap object until all commands have been 

executed. If the header indicates that the file is a new mission script, the IBA object will 

place the commands into a mission file for use either by the Mission Script Activity 

(mission script object in Figure 31) when it is reactivated. If the uplinked file contains the 

header indicating a time-stamped mission script, the commands are stored and will be 

used in the future by the same IBA object.  
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5.3.1.1 Command Messages and Command Logic 

 One major difference between the ground to satellite command processing 

architecture of Bevo-1 and that for the current missions is the communications protocol. 

Namely, the format of the messages sent to and from the satellite and the ground station 

is different. Bevo-1, for the majority, used ASCII text for its on-board logs, telemetry and 

command files. However, the current missions’ scripts, telemetry, and almost all on-

board logs are communicated in binary format.  

 For Blackbird, there was a set of predefined nouns and verbs that formed the 

commands that Bevo-1 was able to interpret. The nouns and verbs were hardcoded into 

the software. The ground station would uplink command files with each command 

implemented as a C++ String object. Each string contained a noun and a verb, and could 

contain parameters depending on the command, for example “DRAGON TURNON” or 

“RUNDGN SETDURATION 10”. The noun in the command corresponded to a 

particular device that could be controlled in software, such as “CLOCK”, “GPS”, or 

“RADIO”, or an activity in the software that could be started or stopped, such as 

“MONPWR” corresponding to the monitor power activity. The verb would then indicate 

what action to perform for that noun. Each noun could have several verbs, and through 

using a specific combination, would map to a different satellite operation pertaining to 

the corresponding device or activity. 

 This type of String command processing was abandoned for the current missions 

in favour of binary commands. Instead of using “nouns” and “verbs”, C&DH op-codes 

are used to distinguish between commands that the C&DH can interpret. Each op-code, 

implemented as a distinct byte, can be related as a specific combination of a noun and a 

verb in the form of command processing used in Bevo-1. Therefore, each subsystem has 

many op-codes that correspond to its related operations. Similar to Blackbird, Hookem’s 

op-codes are also hard coded into the software in a class called OpsCommands. This 

command processor class can also expect a certain number of parameters to be included 

with the op-code to form one command. Each command is SLIP framed before being 

transmitted (see section 5.3.1.3).    
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 The main advantage of implementing binary commands rather than C++ String 

commands is the savings in resources required for data transfer between the satellite and 

ground station. The size of uplink and downlink files is reduced, thereby minimizing the 

time required to communicate data with the ground station. This is advantageous as there 

is a limited time period for each pass when communication with the ground station is 

possible. 

5.3.1.2 Command Management 

 The C&DH system is responsible for populating the list of allowable op-code 

commands that the satellite can process. All the commands and their corresponding op-

code byte values are kept in a spreadsheet available to the subsystem lead engineers in 

the TSL. The list of commands are segmented into categories including system level, 

C&DH high-level, subsystem level, and mission specific commands. 

 The system level commands include those which are the required for basic 

satellite operability from the ground station, such as the indicator op-code distinguishing 

between commands for immediate execution and mission scripts, resetting the C&DH 

computer, transitioning out of Fail Safe mode, and requesting an acknowledgement from 

the satellite. C&DH high-level commands are the commands used in the FSW for activity 

configuration, for example starting and stopping activities, and for data related actions, 

such as requesting certain files to be downlinked. The rest of the commands map to the 

high-level functions included in each subsystem’s software interface with the C&DH as 

described in the respective ICDs. By allowing access to only the subsystem high-level 

functionality, most of the subsystem capabilities can be utilized by the ground station 

operators. However, by not including access to every possible satellite subsystem 

function, a level of abstraction between the satellite software and the ground station is 

established that decreases the complexity of the ground station to satellite command 

processing.  
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5.3.1.3 SLIP encapsulation 

 As the C&DH system is transmitting and receiving binary data, it was evident that 

the subsystem required a communication protocol for interactions with the ground 

station. A version of the Serial Line Internet Protocol (SLIP) was implemented by the 

C&DH subsystem in order to encapsulate all data that was sent to and from the ground 

station. SLIP is a practical standard mainly used for point-to-point serial connections 

running TCP/IP (The University of British Columbia 2003). It works by framing the 

packets on a serial line through a definition of a sequence of characters. It is important to 

note that SLIP is the protocol used internally between the C&DH and the ground station 

software, and is implemented to encapsulate mission data in the high-level C&DH 

software before the COM software is called to actually transmit or receive. The SLIP 

encapsulation is entirely external to any data or packet manipulation the COM executes 

during data transmission or receipt.  

 SLIP was the protocol of choice for the C&DH system for several reasons. First, 

the data shared between the C&DH subsystem and the ADC subsystem will follow the 

NanoSatellite Protocol. This protocol was developed by the Space Flight Laboratory at 

the University of Toronto, and is based on the Simple Serial Protocol (SSP) (Sinclair 

Interplanetary 2008). The ADC subsystem uses NSP as the reaction wheels are from 

Sinclair Interplanetary and are configured for NSP communications. The NSP messages 

from the ADC computer to the ADC devices are encapsulated into packets using SLIP 

framing. It was through discussions with the ADC team that the C&DH system decided 

on using SLIP framing for the satellite flight computer to ground station communication. 

Another reason for using SLIP encapsulation is that it is easy to implement as it has a 

very low level of complexity. There is no error detection or correction, compression 

mechanisms, or packet type identification. However, the C&DH system did not need the 

protocol to have error detection properties, as the COM system handles packet and data 

authenticity in the form of checksums. Therefore, minimal effort by the C&DH team was 

required to implement SLIP framing for its needs.  
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5.3.2 Mission Scripts 

  The list of tasks to be performed by the satellite in ACE mode for completion of 

the mission objectives is known as a mission script. A mission script is formed by a set of 

commands that together will provide the satellite with the instructions necessary to 

complete a mission phase. There will be one mission script for each mission phase that 

will be loaded onto the satellite before launch. Therefore, the satellite will already have 

the sequential list of commands to execute each mission phase before being in 

communication with the ground station. A diagram depicting the pre-loaded mission 

scripts for the ARMADILLO mission is shown in Figure 32. 

 

Figure 32. Sequence for Execution of Pre-Loaded Mission Scripts for ARMADILLO 

Mission 

 For the ARMADILLO mission, there will be four mission scripts pre-loaded onto 

the satellite, Nominal, Sensors and Actuators Test (SNAT), PDD Experiment (PE), and 

FOTON GPS Experiment (FGE), all of which are executed in ACE mode. As shown in 

the diagram, after completing the tasks in the current mission script, the satellite can only 

move onto the next script, or repeat a previously executed script, after receiving a ground 

command enabling it to do so. This is done in order to allow the operators of the ground 

station the time to ensure that all the necessary data has been collected, downlinked and 

received for that mission phase before moving on to another script. 
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 In addition to the pre-loaded mission scripts, the satellite will have the capability 

to receive and execute uplinked mission scripts while in orbit. The uplinked mission 

scripts can be one of two types, a mission script to replace that which is currently getting 

executed, or a time-stamped mission script to be executed at a later time. The satellite can 

distinguish between these two types of scripts based on the header line at the beginning 

of the uplinked file. The purpose of being able to uplink mission scripts is the flexibility 

of replacing the pre-loaded scripts or adding entirely new mission scripts if this decision 

is made based on the mission data or any possible errors encountered during operations.  

 The sequence diagram from Figure 33 shows how the different classes involved 

with replacing the current mission script with a newly uplinked script interact to perform 

this task. The mission script scheduler (depicted in the figure as the commScheduler 

object) is responsible for the management of the mission scripts. Once this object 

receives the signal from the check Uplink object to start after the communication with the 

ground station during a pass is concluded, it will set the missionscript activity’s file to the 

new mission script, and will start the activity for execution. 
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mission script

comm Scheduler
check Uplink

Start:=Start()

CheckForTimeStampedMS:=CheckForTimeStampedMS()

Start:=Start()

SetMissionFile()

WaitForStop:=WaitForStop()

 

Figure 33. Sequence Diagram for Execution of the Replacement of the Current Mission 

Script 

 Time-stamped mission scripts provide a level of autonomy to the FSW, and 

therefore the spacecraft. The satellite is responsible for determining when it is time to 

execute the mission script after receiving it. Therefore, rather than the satellite only 

executing commands when it is in the range of the ground station, future commands can 

be uploaded at the convenience of the ground station operators, and they can be executed 

at times without the requirement of ground communication. The sequence diagram in 

Figure 34 shows the process for uplinking and executing a time-stamped mission script. 

If the commScheduler object determines that the time-stamped mission script time 

matches the satellite time, it will shut down the mission script activity executing the 

current mission script, and start up the IBA. The interruptBuffer activity will then copy 

the commands from the time-stamped mission script into a buffer for execution. Once 
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these commands have been processed, the commScheduler object is free to restart the 

mission script activity and return back to nominal operations.  

comm Scheduler

Looped()

mission script

interrupt Buffer

DoCommands:=DoCommands()

Start:=Start()

Command Map

MapHexVals:=MapHexVals()

Run()

MapHexVals:=MapHexVals()

Start:=Start()

finished

Stop:=Stop()

 

Figure 34. Sequence Diagram for Execution of a Time-stamped Mission Script 

5.3.3 Pass Prediction-Based Automatic Downlinking 

 A distinguishing characteristic of the FSW is the automatic downlinking of data 

based on on-board pass prediction. An activity running in Hookem, the 

CheckForPassActivity class will be responsible for predicting the time until the satellite’s 

next pass over the UT-Austin ground station. After the predicted amount of time has 

passed, CheckForPassActivity will start the activity responsible for downlinking the files 

listed in the file request to ground. Most of the code for this class, including that which 

gets executed in a loop for this thread and that which involves predicting when a pass will 

occur, has been inherited from Blackbird. The Blackbird software would automatically 

downlink DRAGON data when a pass was predicted on-board. However, Hookem will 



 82 

downlink any data files included in the file request that has not yet been downlinked, 

regardless of which subsystem generates them. 

 A state diagram depicting the main events that occur in the looped method of the 

CheckForPassActivity class is shown in Figure 35. 

Load TLE

Check Age of TLE

Predict Pass Rename TLE file to Old TLE file

[can't open file] 

get TLE from GPS

[can open file] 

[too old] [not too old] 

Load TLE from Old TLE file

[unsuccessful] 
[successful] 

[unsuccessful] 

[successful] 

get TLE from GPS

Predict Pass

Predict Pass

[successful] 

Predict Pass

[unsuccessful] 

[unsuccessful] 

 

Figure 35. Flow Chart for Hookem's Pass Prediction Feature 
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 One of the tasks of the GPS is to update a file stored on-board with the Two-Line 

Element (TLE) set when the C&DH requests it. There are two files kept on-board for 

storing TLEs generated by the GPS, one file to keep the latest TLE, and another that 

stores the most recent outdated TLE. In the CheckForPassActivity, the C&DH will 

retrieve both lines of the latest TLE. If the retrieval is successful, and the TLE has been 

updated within the past day, then a method will be called to predict the next pass using 

this information. Whereas if the TLE is outdated by more than 1 day, then it will be 

renamed as the outdated TLE and the C&DH will command the GPS to obtain the 

required data and form a new TLE. This newly created TLE can then be used to predict 

the next pass. The C&DH will also command the GPS to obtain a new TLE in the case 

that the system was unsuccessful in retrieving the latest TLE. If no solution is acquired by 

the GPS, the pass prediction method will be called using the TLE contained in the 

outdated TLE file.  

 The CheckForPassActivity class uses one method for predicting when the pass 

commences and ends. The method makes use of a package of C++ files developed by 

Henry that is an implementation of North American Aerospace Defense (NORAD) 

Command’s Simplified General Perturbations-4 (SGP-4) orbital models for near-Earth 

objects, commonly used in satellite tracking software (Henry 2013). The package 

contains supporting classes that provide the capability of propagating a satellite’s orbit 

and calculating predictions of orbital parameters such as azimuth, elevation, range, and 

range rate using TLE data gathered by the GPS.  

 The pass prediction method implemented in the FSW first creates an object 

representing UT-Austin’s ground station with its known location as its attribute, and an 

object representing the satellite itself with the TLE data. The times until the next 

Acquisition of Signal (AOS) and until the next Loss of Signal (LOS) are calculated using 

the attributes of the ground station and the satellite and the current satellite time. The 

algorithms that calculate AOS and LOS are adopted from PREDICT, an open-source 

software that provides real-time satellite tracking and satellite orbital predictions 

(Magliacane 2013). The algorithms determine the time until the satellite rises a certain 
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level above and below the horizon of the ground station. The activity will then sleep until 

the time of AOS is reached, at which point it will start the downlinking thread of 

Hookem. However, any files automatically downlinked off the file request list will not be 

marked as “successfully downlinked” until the satellite receives a confirmation from 

ground that they have been received without loss of data. The pass prediction activity can 

be de-activated through a ground command if it is decided by the ground station to turn 

off this feature.  

 As this automatic downlinking capability adds a level of complexity to the FSW, 

a significant amount of testing must be performed on the software responsible for on-

board pass prediction and for the proper interaction between the commencement of file 

transmission through pass prediction and commencement through ground command 

request. At the time of publication, both the CheckForPassActivity and the 

CommWithGroundActivity classes, the latter being the thread responsible for downlinking 

the files on the file request, have been unit tested. However, scenario tests must be 

conducted with test cases for various potential situations that can be encountered during 

flight involving the pass prediction capability. These tests are a part of the future work 

that will be conducted on the C&DH system before completion. 

5.3.4 File management 

 The Kernel and the root file system (Rootfs) are stored on the NAND flash 

memory of the flight computer. The Rootfs is the Linux root file directory for the FSW. 

The Kernel and the Rootfs, including Hookem, are stored and booted from the NAND 

flash, as opposed to the NOR flash or the SD card. The NOR flash is not used as the FSW 

file in its current state is 4 MB in size and would not fit on the NOR flash. The FSW is 

not stored on the SD card in case there are any problems encountered related to mounting 

functions, or corrupted SD cards, and therefore any problems with the SD card will not 

result in complete mission failure. A discussion on how the backup copies of the FSW 

will be used for software verification and validation at runtime is discussed in section 

5.3.8.  
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 All mission data generated by the payloads for each mission, as well as all health 

data, will be stored on the external SD card. Separate directories will be created on the 

SD card to maintain an organized file system to facilitate the transmission and storage of 

generated mission data. The naming convention for generated files will be kept uniform 

across subsystems to minimize differences in the manner of requesting files from the 

ground. To prevent the SD card from being a single-point failure for the data storage 

system, a spacecraft command will be able to change the future data storage location 

from the SD card to the NAND flash on the LPC3250. 

5.3.5 Beaconing 

 One of the lessons learned from the FASTRAC mission was to transmit two 

beacons rather than the one beacon. The FASTRAC satellites transmitted a beacon of 126 

bytes in size via a UHF/VHF radio every two minutes while waiting for a connect request 

from the ground station (Greenbaum 2006). However, the FASTRAC team suggested 

that for future missions, it would be helpful to have two beacons, a continuous wave 

(CW) beacon and a packet beacon. The CW beacon includes very basic satellite health 

data whose primary purpose is to provide the ground station with a quick indication that 

the satellite is operational. The packet beacon includes more in depth satellite health data 

and can be downlinked by amateur radio users outside of the main ground station 

reception area.       

 Currently, the design is for the current missions to have two separate beacons. 

The first beacon type is designated as the simple CW beacon, and will be transmitted 

using Morse code at a rate of roughly one beacon per minute. However, producing the 

Morse code beacon is a time consuming software project that has not yet been started by 

the Communications team. Therefore, it is unknown whether this capability will be 

implemented in time for the launch of Bevo-2 and RACE, but should be ready for the 

ARMADILLO mission. The packet beacon will be transmitted at a slower rate than the 

simple beacon, at approximately once every two to three minutes. It will be transmitted 

using the radio in the same manner as the other health data files and mission telemetry 
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data. The file is broken down into smaller packets which get sent concurrently. The file 

can be re-requested if not correctly transmitted. Data included in the beacon are the 

satellite on-board time, the latest satellite position and velocity from the GPS, the latest 

attitude data from the ADC system, and an indicator to bring to attention to the ground 

station if any new errors have been generated by the FSW since the previous beacon.  

5.3.6 Telemetry management 

 Telemetry collected on-board is managed through a health data looped activity. 

This activity is responsible for querying all subsystems for their health data after a 

specific time interval. The health data is collected into circular buffers grouped together 

into a C++ structure, with all buffers using the same beginning and ending pointers. The 

length of the circular buffers and the time between loops of the activity was chosen so 

that the satellite can store roughly three months of health data. The health data will 

periodically be written into a file stored on-board in case of a failure causing the satellite 

flight computer to reset and lose the data.  

  The activity is implemented such that the health data from all subsystems is 

collected into the buffers at the same rate. A timestamp is also stored into a buffer in the 

structure to accompany the health data.  

 A command can be sent from the ground station requesting the downlink of the 

health data. The activity then puts a pause to its data collection, and dumps the contents 

of its circular buffers into a file, with each line as one set of health data for a certain 

timestamp. One addition to this activity will be to handle requests for sub-sets of this data 

from ground, rather than always dumping the entire content to a file for transmission. 

This file is then transmitted to ground via the UHF/VHF radio, and data collection 

continues in the looped activity. The satellite will still be able to receive and execute 

commands while this data is being downlinked. 

 Health data files will also be generated and stored on board from the contents of 

the circular buffer in this activity. When the circular buffers reach capacity, its contents 

will be dumped into a health file for on-board storage automatically. The satellite will 
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continuously maintain and store two files worth of health data (approximately six months 

of health data) independent of the file generated upon a health data downlink request. 

This extra storage of health data will ensure that if an error occurred on-board at a time 

earlier than three months before the ground station requested a health data downlink, then 

the data collected at that time is not completely lost by the circular implementation of the 

health buffers as it is stored on-board. The ground station will then have the capability of 

requesting health data further back than then the three months that are stored in the 

circular buffers if this is needed. 

5.3.7 Command logging 

The C&DH part of the FSW is responsible for maintaining an on-board log. The 

log is implemented in the FSW using the SQLite 3 software library, which is used for 

implementation of databases in many embedded devices with constrained memory. 

Therefore, the log is kept in non-volatile memory, and its data can be accessed even after 

a possible satellite reset without loss. Both the main flight computer and the ADC 

computer will use a log database to record important events occurring on the satellite that 

can be used to help determine errors experienced during testing or flight.  

Particularly for the C&DH software, the log will be used to track all commands 

that get uplinked from the ground station, and the operational mode that the satellite has 

entered. Each command that the satellite can interpret and has attempted to execute will 

be logged with a timestamp generated based on the satellite’s time. The log entry for a 

command will also indicate if the command execution was a success or a failure based on 

the return information from the component involved to the calling C&DH thread, 

OpsCommands. Log entries are also formed when the satellite transitions from its current 

software mode to another. An entry created for this type of event also includes the 

transition variable’s value, which reveals more information as to the cause of the 

transition between modes. Ranges of entries in the log database can be requested by the 

ground station via ground command. The ground station can then use this information to 
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help debug satellite operational errors, and can determine which commands were not 

received, or incorrectly executed by the satellite. 

5.3.8 Satellite Software Redundancy 

 One major concern of having the FSW encompassed into one program is possible 

corruption of the executable file. Single-event effects can be caused by ionizing radiation 

damage to the flight computer and other electronic components of the satellite due to the 

space environment, and must be considered when developing the C&DH subsystem. The 

events include single-event upsets (SEU), single-event latchups (SEL), and single-event 

burnouts (SEB) (Larson and Wertz 2006). SEUs are the least damaging of the three 

categories, but involve soft errors such as a bit flip in memory cells or registers. An SEL 

can be a soft or hard error, and can potentially damage the affected device due to a hang 

up and a resulting excessive current draw that is not dissipated. SEBs are types of events 

that cause the device to fail permanently.  

 The radiation the satellite experiences in orbit is a reason behind having a run-

time process for validating the FSW executable on the C&DH system before it is 

executed after launch. Redundancy of the flight software has been used to mitigate the 

effects of program corruption. Two redundant copies in addition to the primary copy of 

the FSW executable are stored on-board--one copy on the NAND flash memory and the 

other on the SD card. Upon boot up of the flight computer, a script will be executed that 

will check the integrity of the primary FSW executable against the two backup copies. 

The integrity checking process is outlined in the diagram shown in Figure 36. 
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Generate hash for FSW on NAND
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Compare hash of NAND FSW 
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with backup SD card FSW; 

Push an error
Boot FSW
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Reset satellite
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Compare hash of backup NAND FSW
 with backup SD card FSW
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 with backup NAND flash FSW; 

Push an error

 

Figure 36. Flow Chart of Process for FSW Integrity Checker 

 The validation of the integrity of the FSW is performed through a cryptographic 

hash function that generates a hash string for each of the three executables. A 

cryptographic hash function is an authentication algorithm that is used to check the 

integrity of information by generating a message code, or hash, of fixed length using the 

information as the input to the function.  A hash function is a one-way function, meaning 
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it is difficult to decipher and invert the hash to retrieve the original transmitted 

information. A hash function can also be collision-free, where it is infeasible to have two 

sets of information that generate equal hashes. Thus, hash functions are widely used in 

software integrity applications as they generate unique digital signatures for software 

programs (Khan, et al. 2010). Any bit flip caused by radiation will result in a different 

hash for that software. The hash function’s method of generating the hash itself can vary. 

Examples of commonly used hash functions are MD2, MD5, and SHA-1. MD5 was ruled 

out for the integrity software algorithm as, even though it is a strengthened version of 

MD4, the hash function was found to not be collision-free, and therefore should be 

avoided for digital signature applications such as this one (Wang and Hongbo 2005). 

Therefore, out of the three available hash methods, SHA-1 was chosen to be the most 

suitable. The integrity checker software, along with other components of the FSW, was 

developed using the QT framework, as it provides a large selection of helpful object 

classes through its Application Programming Interface (API) that streamline the C&DH 

software development process. 

 Upon bootup, the integrity checking software generates hashes for all three copies 

of the flight software executable. All three hashes are compared, and the copies with the 

matching hashes are assumed correct, and executed. A copy with a mismatching hash 

from the other copies is considered incorrect. If the incorrect copy is the primary FSW, it 

is replaced by a backup. The worst-case scenario is that all three copies of the software 

do not match, as pictured in the bottom right state of the diagram. If this is the case, the 

primary copy of the FSW will be executed. Upon a successful startup of Hookem, an 

error message will be recorded, and this problem will have to be further analyzed on 

ground.   

5.3.9 Command File Validation 

A command file validator is integrated into the ground station to satellite 

communication process in order to ensure the authenticity of uplinked files. All files that 

are uplinked to the satellite are authenticated on-board before the FSW makes any 



 91 

attempt to interpret the contents. Therefore, the CheckUplink Activity thread will not 

attempt to open or process a file unless the command file validator checks to make sure it 

has come from an acceptable source, either from the UT-Austin ground station, or one of 

their partnering organizations.  

The command file validation process, similar to the FSW integrity checker, is 

performed by generating hash strings using a cryptographic hash function. Upon creation 

of a command file or mission script by the ground station, the hash string is created and 

appended to the file. The string is generated from a secret key that is hard-coded into the 

FSW and the ground station software. When the satellite receives the uplinked file, it will 

then run the same hash function with the same key as on ground to generate the hash 

string. The string generated on-board is compared to that appended to the end of the 

uplinked file. If both strings are identical, the flag will be set to indicate that there is a 

newly uplinked file that the satellite can interpret and process. If the strings do not match, 

then the file is ignored and deleted, and an indication of receiving a non-authorized file is 

logged.  

5.3.10 Watchdog 

The LPC3250 includes a processor independent watchdog with disable, normal, 

and extended modes.  The watchdog provides the ability to recover the satellite in the 

case of a processor lockup by resetting the computer. The watchdog program is 

responsible for kicking the watchdog to prevent a reset. In other words, the program will 

periodically reset the watchdog timer by changing the input state at a regular interval 

faster than the timeout period.   

5.3.11 Error database 

 The satellite is expected to experience errors during on-orbit operations. During 

software development the C&DH team is responsible for maintaining the master 

document that lists all pre-defined errors that can occur in the FSW. These errors will be 

automatically logged on-board if they occur during flight. Examples of pre-defined errors 
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include the spacecraft not being able to open a file for reading or writing, or the 

spacecraft receiving a parameter associated with a command that is out of bounds. Each 

subsystem lead is responsible for listing any FSW errors pertaining to their system in the 

master document, and ensuring that the error will be logged in subsystem code. Included 

in the master error database document for each pre-defined error is a unique ID #, the 

name of the program files where this error could be created and the position of 

occurrence, the type of error (for example a null file pointer or an I2C write error), and 

the actions the satellite should take, if any, to resolve the error. The responsible party for 

inputting the error into the document can also include information on how the ground 

station operator would resolve the error. Some critical errors may severely affect the 

satellite’s ability to complete the mission requirements, and may require a reset of the 

satellite in order to be resolved, which is indicated in the document as well.  

Two on-board error databases were created to keep track of any such errors that 

the satellite experiences throughout the mission. The databases are implemented in the 

FSW using the SQLite 3 software library. The first database placed on-board will be used 

for logging errors that are referenced in a file containing all the possible error IDs, and 

any subsequent autonomous actions that the satellite should take. The second error 

database is the log that is populated as errors occur. This second log can be requested by 

the ground station to see if any FSW errors have occurred so that appropriate ground 

actions for resolution can be taken. Previous log entries can be deleted from the 

spacecraft storage when the information is received on ground.  
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Chapter 6: C&DH System Testing 

In order to verify the functionality of the C&DH system, it must pass extensive 

testing before it can be used for TSL’s upcoming satellite missions. As much effort and 

focus should be put into the testing process of the FSW as is put into the design and 

implementation phases. The TSL has implemented the practice of performing tests on the 

satellite software and hardware throughout the development process. Testing commenced 

early in the FSW development cycle on individual software classes for a specific 

hardware component, and has continued in the assembly and integration phases by 

running vibration and thermal tests and simulating Day-in-the-Life scenarios with the full 

satellite.  

This chapter describes the previous and current tests that have been executed to 

validate the C&DH system, as well as the FSW for the integrated satellite. In addition, 

previous test flight opportunities and demonstrations that were used as milestones in the 

FSW development schedule are presented in the chapter.  

6.1 FLIGHT SOFTWARE TESTING 

It is vital to the success of the mission that all software to be flown on the satellite 

is put through rigorous testing to reveal software bugs and memory leaks. Software 

testing is a process of running a program with the objective of finding errors (Myers 

2004). In other words, testing a program will increase the confidence that it will function 

as intended by finding imperfections and cases which refute this idea. The acceptance of 

this definition then leads to the following goals for software testing performed in the 

TSL: repeatability, systematic testing, and documentation. The tester should be able to 

repeat the encountered software defect, and show it to other TSL members if need be. 

This is an important step in resolving the defect, so that once the fix is implemented, it is 

known how to attempt to repeat the defect for the purpose of ensuring that the resolution 

was indeed successful. Systematic testing is used in this context to describe the action of 

choosing particular test strategies and cases so that the tests cover the full range of the 
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program’s behaviour and usage (The University of British Columbia 2003). All formal 

testing should be well documented so that the lab has a record of which tests have been 

executed on what components of the FSW, and the results of these tests.    

Working on a satellite mission, the software developers must perform as much 

testing as possible within the strict time constraints of the schedule. Even with allotting a 

significant amount of time in the schedule for software testing, it is impractical for all the 

possible points of failure to be detected and corrected. The schedule allows for an 

execution of a limited number of test cases. Therefore, it is important to put thought into 

the test cases so that they cover a wide range of possible scenarios and events that could 

cause failure.  

6.2 C&DH SOFTWARE UNIT TESTS 

The first type of testing that was performed on the C&DH software was unit 

testing. Unit testing involves testing each separate unit of a software program on its own 

to ensure that it meets its specification (The University of British Columbia 2003). For 

the C&DH software, written in C++, each class was tested as a separate unit. Black box 

and glass box testing are common test techniques employed for testing engineering 

software products, and these tests were performed on each class. 

  Black box testing is a technique where the focus is on the specifications and 

requirements of the software (Homes 2013). The test on a particular software unit is 

considered complete when the all the requirements have been verified. The name comes 

from the notion that the test cases are generated without viewing the actual code, thereby 

treating the unit as a black box, but only from considering the specifications. The goal of 

this technique is to verify that the software unit will interface correctly with the rest of the 

program by testing the unit with different inputs and observing the resulting outputs. One 

advantage of black box testing is that the tester need not be familiar with the 

implementation details of the software component but must rely on the functional 

specifications. Therefore, the tester will not make any assumptions about the 
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functionality of the software when running various test cases. Another advantage to this 

form of testing is that it requires that the specifications be well documented.  

Glass box testing, as the name suggests, considers the internal structure of the 

code being tested, and identifies defects with the internal functionality of the code. This 

technique focuses more on the implementation of the unit and examines the logical paths 

through the software (Iskrenovic-Momcilovic and Micic 2007). The list of test cases 

should be path complete, meaning that all possible paths through the code have been tried 

with at least one test case. It may be impractical to test all paths through a software unit, 

such as with the case where a loop is run through N times, where N is a very large 

number. In these cases, the tester must use their judgment, such as in the aforementioned 

scenario of having test cases where the loop is run through 0, 1, 2, N-1, and N times. The 

tester should keep in mind that all possible paths to exit the loop should be tested. 

Each class created for the C&DH software was put through unit testing, both 

black box and glass box tests. Once the implementation of a class was completed, a 

document was generated to record the results of both tests. Included in this document is 

the description of the class, the test procedure, and the list of methods to be tested. The 

test procedure section includes any necessary hardware and the set up instructions. For 

each method, the functional specifications are listed in the document for reference. For 

both the black box and glass box tests, the documentation includes each test case 

performed, the expected and actual results, and a pass/fail check box. Also included in 

the document is a section for analyzing any failed cases and any major changes to the 

code needed to resolve the issue. An example of the information given for one method, 

DownlinkFile() from the CommWithGroundActivity class, is given below. 
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Figure 37. Information Included for the DownlinkFile Method of the 

CommWithGroundActivity in its Unit Testing Documentation 

 For the majority of the classes, the correct functionality was confirmed through 

the performance of these tests. In some cases, when coming up with the test cases, the 

C&DH team could recognize an error in the method before running the tests. In the case 

of the black box testing, if the tester was the person who wrote the method, they would 

recognize that a particular scenario or a set of inputs was not considered during 

implementation, and that the method would not respond correctly. Therefore, the tester 

could then update the code in order to handle this case correctly, and the test case would 

be considered as passed. It might have been beneficial to ensure that the tester was not 

the same person as the developer in order to get a better idea on how many of the test 

cases would have failed without implementing fixes concurrently. However, the goal of 

the tests is to identify failure points for each method, and this was accomplished. 

The performance of this type of testing on the C&DH software provided valuable 

information pertaining to its development. First of all, the generation of the test cases 

forces the developers to put thought into as many possible cases where each method 
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could fail and produce undesired outputs. Most of these cases would not have been 

considered if not for these tests. In particular for the C&DH software, due to the FSW’s 

centralized architecture, there are many classes and methods whose purpose is to interpret 

files and instructions sent from other subsystems or the ground station, and to relay this 

information to another component of the satellite. Therefore, there are many test cases 

that involved characterizing how the software could handle scenarios that are special, but 

not rare, such as improperly formatted commands, or empty or missing files. Performing 

these tests helped identify and prepare for these cases.  

Another useful outcome from these tests is that they provided the software 

developers with an opportunity to put more thought into the purpose and functional 

requirement for each class involved in the C&DH software. Since these unit tests 

emphasize the functional specifications, a consequence was that each class’ role and how 

it fit into the C&DH software design was analyzed in scrutiny.    

6.3  KESLER INTERFACE BOARD TESTS 

In order to validate the Kesler interface board for flight, a test plan was generated 

and executed for each board used in the TSL. The test plan outlined several testing 

procedures to be completed for each new interface board used for either software 

development or for flight.  The test procedures to be performed for testing the Kesler 

board include checking for short circuits, current draws of the voltage regulators, header 

connectivity, proper power switch functionality, watchdog capabilities, and 

communication interface functionality. Similar to all hardware test procedures that are 

executed in the TSL, the Kesler board hardware test is administered by the technician 

who enters all of the results into the test plan with his/her initials. Once completed, the 

test plan is examined by a team member acting as the Quality Assurance agent. The tests 

were completed on the Kesler boards once they were acquired from the manufacturers. 

The most recent Kesler v2 boards for the RACE mission were tested this summer with no 

anomalous results.  
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6.4 GROUND STATION GRAPHICAL USER INTERFACE 

To aid in the testing phase of the development process for the TSL, a ground 

station Graphical User Interface (GS GUI) is currently being developed by the C&DH 

team to act as the ground station’s interface with the satellite during integrated system 

testing, as well as flight operations. Work on the GS GUI commenced in 2012, and new 

functionality has continued to be added to the software over time. Versions of the GS 

GUI have been used for past satellite software and hardware demonstrations, as well as a 

tool for performing FSW testing including the Command Execution Tests (CET) and 

Day-in-the-Life tests. 

6.4.1 GUI Features 

The objective of the GUI is to minimize the effort required for the ground station 

operator to interact with the satellite during the testing phase and for flight. The GUI 

meets this objective by allowing the user to generate mission scripts and command files 

by inputting their selections through buttons or drop-down lists. Screen shots of the 

current versions of the two windows comprising the GS GUI, the command window and 

the telemetry window, are shown in Figure 38 and Figure 39. 
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Figure 38. The Command Window of the GS GUI 

 

 

Figure 39. The Telemetry Window of the GS GUI 
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The command window is where the user can create a mission script or a command 

file, and select the commands that will populate the file. The file to be uplinked is 

generated automatically by the ground station software based on the user’s selections. 

The command queue box located on the right side of the window shows the data that will 

be written to the command file based on the user’s command selection. This window acts 

as an aid for checking for the correct op-codes to be sent to the satellite. The data is 

shown before slip encapsulation and before the hash string for command file validation is 

appended. 

Upon transmission, the GUI generates two files to be saved on the host computer. 

The first file generated contains the raw data that is transmitted to the satellite in the exact 

format that is uplinked. The second file is a human readable file which contains the 

names of the commands that are included in the uplink file. This file can be quickly 

scanned by the user to view which commands were included in a past command file or 

mission script. Allowing the GS GUI to populate the file with the op-codes and 

restricting the user to the buttons and menus on the command window reduces the risk of 

transmitting an incorrect list of commands to the satellite as the formatting of the 

command file or mission script is performed by the GUI.  

The telemetry window displays some of the data that is downlinked by the 

satellite. The GUI is used for receiving satellite beacons, health, telemetry, and mission 

data downlinked in response to a sent command. The data received from the satellite is 

saved onto the ground station computer and timestamped with the ground time. The 

telemetry window then parses the data received from the satellite, and displays either 

certain fields of the parsed downlinked data or a generated message indicating that 

mission data has been received and saved on ground. Data that is currently presented in 

the window includes health data such as battery voltage, current, Kesler board 

temperature, satellite acknowledgement messages, the on/off status of subsystems, and 

requested downlinked camera images displayed in a pop-up window. 



 101 

Another useful feature of the command file generation capability of the ground 

station software is the capability to communicate with the flat sat either through radio 

transmission or through a UART interface. The flat sat comprises similar hardware and 

electrical connections as those included in the flight version of the satellite, but it is laid 

out flat on a surface for easier accessibility while testing. All formal tests are first 

conducted on the flat sat before they are attempted on the flight spacecraft. The current 

configuration of the TSL’s flat sat, consisting of the Bevo-2 versions of hardware, is 

shown in Figure 40. 

 

Figure 40. Flat Sat used for C&DH and Full FSW Testing 

The GUI allows the user to specify the method of communication. Only one variable 

needs to be changed in the FSW in order to switch between selections. This feature has 

been useful during software testing with the flat sat in the times where radio transmission 

is not possible. This could be due to the radio software being in an inoperable state, or not 

having access to the communication team’s hardware to be used on the flat sat. As this 

feature was not thought of until after later in the development of the C&DH system, the 

UART connection to the flat sat has been through the interface designated for the PDD 
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instrument used on ARMADILLO. Therefore, when flat sat testing involving the PDD 

begins for this mission, connecting the ground station GUI through UART instead of 

using radio transmission will not be possible. This capability will be examined for 

addition to future C&DH system designs. 

6.4.2 Current Progress 

The future work of the C&DH team on the GS GUI will consist mainly of 

completing the implementation of the telemetry window capabilities. This includes 

finalizing the actions and the method of display of the GS GUI in response to downlinked 

data from each satellite command sent through the command window. For mission data, a 

capability that needs to be completed is an indicator to the user that there is more recent 

downlinked data. Another modification to occur is to ensure that the software is operable, 

or can be operable with minimal changes, with Ground Station Equipment (GSE) other 

than what is currently available in the UT-Austin ground station. The purpose of this 

feature is two-fold: the GSE GUI is meant to be portable as it is to be used for satellite 

testing no matter the location, and the UT-Austin ground station equipment is soon to be 

upgraded before launch of the current TSL satellites. These additions, along with other 

minor modifications, will help make the GSE GUI a very valuable testing tool for the 

current missions, and a strong stepping stone for testing tools for future TSL missions.  

6.5 GSE HARDWARE 

The GSE hardware consists of the Ground Support (GS) laptop, the GSE interface 

box, and the umbilical wire harness that connects to the satellite from the GSE box. The 

GS laptop runs the GSE GUI and other scripts used in the integration and testing phase. If 

a direct connection to the satellite is required (and not through interaction with the GS 

GUI) during testing, the GSE interface box acts as the medium between the GS laptop 

and the satellite. The GSE box was designed by members of the TSL for use with the 

current missions. Its functionality includes providing inhibit switches, displaying the raw 

battery voltage through the use of a voltmeter, and enabling charging of the EPS system 
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by providing 5V DC power. Figure 41 shows the connections between the GSE 

equipment and the satellite.  

 

Figure 41. Hardware Block Diagram of GSE Setup (Texas Spacecraft Laboratory 2012) 

The block labeled DevComputer represents the GS laptop for a direct connection, where 

the user can see the console output of the LPC flight computer and type commands via 

command line directly to the LPC on the spacecraft. The GSE box also provides a 

connection to the Kraken interface board so that a second development computer can be 

used to directly connect to the ADC computer. 

6.6 PAST FLIGHT SOFTWARE DEMONSTRATIONS AND TESTING OPPORTUNITIES 

There have been several opportunities over the past year to demonstrate the 

capabilities of the flight software and its use with the Engineering Development Unit 

(EDU) hardware. These demonstrations acted as major milestones in the overall satellite 

development schedule, and helped advance the progression of the FSW. For each 
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demonstration, the TSL wanted the FSW to meet a certain level of functionality. 

Therefore in preparation for each event, a significant collective effort was made by the 

TSL members to meet these goals. Thus, major improvements in the capabilities and 

testing of the FSW were achieved. Past demonstrations were held at the ARMADILLO 

Proto-Qualification Review (PQR) in August 2012, at the Small Satellite Conference in 

Logan, Utah, and at the Flight Competition Review (FCR) in January 2013. Another 

major milestone in the FSW development was in preparation for the Student Hands-On 

Training (SHOT) II workshop in Summer 2012. 

In late June 2012, four members of the TSL participated in SHOT II in Boulder, 

Colorado. SHOT II is a three-day workshop hosted by the Colorado Space Grant 

Consortium for teams from the universities entered in the current UNP Nanosat 

Competition. Occurring after the first year in the two year lifetime of the competition, the 

workshop gives each team the opportunity to test a component or multiple components of 

their satellite in a flight-like environment by launching it on a high altitude balloon.  

The TSL’s main objective from this testing opportunity was the verification of the 

C&DH system’s interface with other subsystems. The payload contained similar or 

identical hardware as is expected to fly on the ARMADILLO satellite. Therefore, the 

mission was designed to verify that the SW would successfully boot and initialize, turn 

on the various subsystems, and record and save data to the SD card for downlink during 

flight and for post-flight analysis. UT-Austin’s payload consisted of the C&DH system, 

including the LPC3250 connected to a Kesler v.0 interface board, the Lithium 1 radio, a 

Honeywell HMR2300 magnetometer which is a component of the ADC system, the 

ClydeSpace EPS system, the NVS system, and the FOTON GPS receiver. The Lithium 1 

radio is another UHF/VHF radio fabricated by AstroDev which is the half-duplex version 

of the Helium radio to be used on TSL’s current satellite missions. Another hardware 

component flown on the SHOT II payload that is not a part of ARMADILLO is a 

Honeywell pressure/temperature sensor to monitor the temperature and to relate this to 

the data generated from the FOTON, magnetometer or the EPS system’s voltage and 

current readings.  
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Figure 42. Components of the SHOT II Payload for the TSL 

The flight experiment consisted of recording magnetometer and pressure 

measurements at a rate of 10 Hz, capturing and saving images with the NVS camera 

every 30 seconds, beaconing a simple text message every minute, and collecting GPS 

readings from the FOTON. 
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Figure 43. SHOT II Integrated Payload for TSL Attached to the Other Payloads before 

Launch 

The results from flight showed partial mission success. The FSW was initialized 

correctly upon launch, and log files containing the generated data began being produced 

90 seconds after bootup. Log files were successfully produced and saved onto the SD 

card for all subsystems. Magnetometer and pressure data was successfully generated and 

stored on board. However, the files created by the FOTON did not contain any data, 

indicating that the instrument was not able to track any GPS satellites. From post-flight 

analysis, it was determined that there was no visible damage or bad connections to the 

antennas, and that all the hardware was still functional. The conclusion by the TSL SHOT 

team was that the FOTON board, along with the other subsystems of the payload, was 

attempting to pull an excess amount of current which caused the EPS to be current 

limited, and thus to not generate enough power for the FOTON to operate successfully. 

For the SHOT flight, the FOTON was attached to an interface board that needed to 

communicate with Kesler v.0 board. This extra interface board will not be flown on 

ARMADILLO. Therefore, the power budgets generated for ARMADILLO, and not 

updated for the SHOT II mission, indicated that there was sufficient power for the 

payload. However, these budgets should not have been applied for this experiment. 
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Another failure from this mission was that the camera images produced during flight 

were completely black, with the conclusion being that the settings were not adjusted 

accordingly in order to take pictures of the Earth.  

Participating in the SHOT II workshop supplied the TSL with numerous lessons 

that will all aid in the continuing development of current and future satellite missions. It 

also demonstrated the importance of proper testing of all software and hardware 

components not only as a separate unit, but together as an integrated spacecraft. 

6.7 FUNCTIONAL TESTS 

The first tests to be run on the fully integrated satellite were the functional tests. 

These tests however, have an emphasis on verifying the satellite’s hardware rather than 

the FSW. The purpose of the functional tests is to ensure that every hardware component 

of the satellite, with the exception of the ISIS deployable antennas, is operable and ready 

for flight. These tests are designed so that they can be executed before launch to ensure 

no component is in a state of failure at this time. Each subsystem was asked to create a 

functional software test script that will run through the commands necessary to verify that 

its hardware is operating correctly. These scripts were then compiled into an executable 

that allows the user to select which subsystem script to commence for testing. The 

executable is run from the satellite’s flight computer, thus the GS GUI is not used for 

these tests. The testing procedures outlined for the functional tests dictate the order in 

which the subsystem scripts should be executed. Figure 44 shows the performance of the 

functional tests on Bevo-2. As shown in the figure, the user is directly connected to the 

satellite from the GSE laptop via the GSE interface box (located in the bottom of the 

figure). 
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Figure 44. Functional Test in Progress on Flight Version of Bevo-2 Satellite 

 The functional tests were run first on the flat sat to observe the satellite actions 

before running the tests on the Bevo-2 flight satellite. Functional testing for Bevo-2 

commenced earlier in June 2013, and has been executed for all subsystems twice on the 

flat sat, and once on the flight unit. Several of the individual subsystems tests did not pass 

when the tests were conducted on the flat sat, namely the scripts for the NVS, GPS and 

COM subsystems. However, it was determined that these failures were due to minor bugs 

in the functional test scripts themselves. For the functional tests on the flight unit, the 

only subsystem that failed was the ADC system. Troubleshooting to find the cause of this 

failure led to the discovery of a hardware defect in the EPS flight unit which is currently 

being resolved. Even though the mission development schedule experienced a setback 
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due to this failure, the importance of running the functional tests was demonstrated 

through this result. 

6.8 COMMAND EXECUTION TESTS 

The next major step to be performed in the FSW testing process is the Command 

Execution Test (CET). The purpose of the Command Execution Test is to run through 

every command that can be uplinked to the spacecraft (Air Force Research Laboratory 

2013). This is to help prevent the ground station from sending a command that can place 

the satellite into an unknown state and jeopardize its integrity. The results generated in 

this test can then be used to compare and recognize the satellite actions that are taken 

during flight.   

The test is designed to be executed with the FSW running on the integrated 

satellite and with the hardware reacting to the uplinked commands. Therefore, the CET 

will not only test for any bugs or defects in the FSW, but it will test the various software 

and electrical interactions between all the components of the integrated satellite. The 

CET differs from functional tests run on the full satellite in that the functional tests only 

execute one script at a time, and each script is written specifically to test only the 

functionality of one subsystem. The CET is the first test involving both hardware and 

software from multiple satellite subsystems. Similarly to the functional tests, the CET is 

executed first on the TSL’s flat sat as a dry run, and every command the spacecraft can 

interpret must pass before the CET is attempted on the flight unit. 

The CET will be the first test with the fully integrated satellite that involves 

utilizing the end-to-end operation of the TSL’s communication system. All commands 

sent to the satellite will be transmitted using UT-Austin’s GSE and received using the 

satellite’s Helium radio. Therefore, the CET has added importance in that it will also test 

the integration of the communication system’s software with the C&DH software. The 

interface between the COM and the C&DH software is critical, as a failure in receiving or 

transmitting data for the satellite will lead directly to mission failure as no data will be 

collected. The test is designed to involve commanding the satellite in as similar a process 
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to flight-like conditions as possible, thereby maximizing the detection of possible errors 

and defects that can be encountered while in orbit. To date, most of the preparation time 

of the FSW for the CET has been on integrating the COM code with the FSW. 

6.8.1 Test Description 

The CET is performed to verify the satellite’s behaviour for both cases of the 

spacecraft receiving a command in the proper format with the correct parameters, and of 

receiving the command with incorrect parameters. If a command is accompanied by 

incorrect parameters, an error message should be generated and pushed to the error 

database, and the command should not be executed. It is also important to try the same 

command but when the satellite is in different states. For example for Bevo-2, a 

command exists to take a picture using the star tracker camera. This command should be 

sent as part of the CET for the cases of when the camera is on and the satellite is in ACE 

mode, when the camera is off and the satellite is in ACE mode, and when the camera is 

off and the satellite is in Fail Safe mode. All three cases should result in the satellite 

taking different actions. A picture is only taken for the first case, whereas an error is 

generated and pushed to the error database for the other two cases. In the second case, the 

satellite should push an error indicating that the camera is currently off. Whereas in the 

third case, the error will indicate that this command cannot be executed while in Fail Safe 

mode.  

6.8.2 Test Procedure 

The C&DH team has recorded in the document listing the op-codes for each 

command the following information to be used during the test: a brief description of the 

command, the parameters needed to be accompanied with the command and their 

accepted range if any, the expected actions taken by the satellite, the data to be 

downlinked, the possible error IDs that can be generated, and the high level subsystem 

functions that are called to accomplish the command. The expected actions taken by the 

satellite include any data generated and stored on-board, and any change of the satellite’s 
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software or hardware state. While running the CET, the tester is expected to document 

the observed actions of the satellite in response to a command along with any data 

downlinked, and compare them to the expected results in order to validate the command.  
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Chapter 7: Future Work and Conclusion 

This thesis presents the work that has been performed to date in the development 

of the C&DH system to be used on the Bevo-2, ARMADILLO and RACE missions. 

With the delivery dates for Bevo-2 and RACE quickly approaching in the spring of 2014, 

there will be no decrease in effort in order to finish the FSW implementation and testing 

to prepare the system for flight operation. At the time of publication of this thesis, the 

focus of the C&DH team members of the TSL is on preparing for the CET, and finishing 

the software necessary to run scenario and Day-in-the life testing. 

7.1 SCENARIO AND DAY-IN-THE-LIFE TESTING 

Upon completion of the CET, the next tests to perform on the integrated satellite 

are scenario tests and Day-in-the-Life tests (DITL). These tests are designed to simulate 

in-flight events and activities the satellite will experience. Similar to the CET, these tests 

will only pass data in and out of the FSW by means that will be used during flight 

operations. The purpose of these tests is to verify the functionality of the fully integrated 

satellite while it is performing various sequences of flight operations.  

In terms of the C&DH FSW, examples of particular scenarios that should be 

tested are the proper interaction of downlinking data based on the on-board pass 

prediction and based on ground request, the uplink of a new mission script or command 

file to execute when the current mission is partially completed, and the generation and 

storage of mission data when reaching SD card storage limit.  

The DITL tests are the last type of tests to be run on the satellite before it is 

delivered for launch vehicle integration. Each mission phase for the particular satellite 

under test must be fully executed and in the correct order. As the lifetime of the current 

TSL satellites range from 6 months to 2 years, the DITL tests will be an accelerated 

simulation of the mission. The boot-up sequence and startup procedure that will occur 

once the EPS system’s inhibits are disabled are included. The test should also force the 

satellite to enter and operate in all of its FSW modes, including Low Power mode and 
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Fail Safe mode. Therefore, the test should simulate situations where the satellite does not 

have enough power to accomplish the commands included in the current mission script or 

command file, or where the satellite experiences a critical failure when attempting to 

execute a command. 

Every possible scenario that may be encountered while in orbit cannot be 

simulated in ground testing. Therefore, the comprehensive suite of tests that are 

performed (functional tests, command execution tests, and day in the life tests) are 

designed to encompass a wide range of possible events that may occur. Judicious 

selection of test cases allows proper behavior of the FSW to be demonstrated in multiple 

situations. The goal of the comprehensive satellite testing is to demonstrate correct 

behavior of the integrated satellite to the extent possible, and to detect and identify any 

software bugs or anomalies that occur so they may be documented and corrected prior to 

flight. 

7.2 CONCLUSION 

Since their beginnings in the late 1990’s, CubeSats have been the satellite form 

factor of choice for an increasing number of scientists and researchers in both the 

educational and professional industries due to their low cost and advancing performance. 

As the CubeSat community continues to grow, so must the technologies and capabilities 

that can be flown on these types of satellites, including the C&DH system. The TSL at 

UT-Austin has experienced this expansion in the quantity of CubeSat missions the lab is 

currently involved in and in the increasing operational sophistication of these missions. 

The presented C&DH system was developed to meet the multiple requirements and 

capabilities of the current and future missions of the UT-Austin TSL. Goals that were 

considered in the design of the C&DH subsystem are modularity and reusability.  

Designing the system around a COTS system on module as the flight computer running a 

Linux environment, and implementing the FSW in C++ using O-O techniques, allows for 

a software architecture using a component-based architectural style. Structuring the FSW 

in a modular manner where each subsystem is treated as a component that interacts with 



 114 

the central flight computer provides system advantages such as subsystem upgradability 

and interchangeability. As with any new system, thorough and well-planned testing is an 

integral step in the development process, requiring just as much effort as the 

implementation. The tests included in validating the C&DH system, such as the 

Command Execution test and the Day-in-the-Life test, are described in this research. 

Leading up to satellite delivery of the Bevo-2 and RACE spacecraft in 2014, the 

emphasis for the C&DH team will be on completing this testing in order to validate the 

FSW before flight unit delivery. 
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Appendix 

+Start() : int
+getCurrentMode() : int

ModeManager

+Mode()
+~Mode()
#Activate()
#Deactivate() : int
+ChooseTransition() : int
+SetTransition()
+GetModeID() : int
+ActivateActivities() : int
+DeactivateActivities() : int

#transition : Transition

Mode

+Activity()
+~Activity()
+Start() : int
+Stop() : int
+WaitForStop() : int
+SetTransition()
#Run()
#Startup()
#Shutdown()
#SignalTransition()
+EntryPoint()

-running : bool
#cancel : MutexValue
-stopCondition : Condition
#parameterMutex : Mutex
#transition : Transition

Activity

+Looped()
+SetTimeout()
+GetTimeout() : int
+LoopedActivity()

-timeout : MutexValue

LoopedActivity

+MapHexVals() : int
+CopyMSFile() : int
+DealWithMSFile() : int

-CurrentByte : byte

OpsCommands

+Looped()
+AcquireData() : int

-recCommands : bool

CheckUplinkActivity

+Looped()

CreatePacketBeaconActivity

#Run()
+SetMissionFile()

-cancel
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Figure 45. Class Diagram of C&DH FSW 
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