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Page 25: Add to 6.1.3 Other U.S. Facilities

Physical Sciences, Inc. has developed the FAST TM oxygen atom beam system. A 12-

Joule/pulse COz laser is focused through a barium fluoride lens into a conical expansion

nozzle partially filled with 02 by a pulsed beam valve. Ignited plasma expands out the

nozzle to dissociate the molecular oxygen, producing a pulse with 80 percent or better

atomic oxygen and less than one-percent ion content. The fluence is approximately 10 TM

oxygen atoms of 5 eV energy per pulse at 3 Hz. VUV and UV radiation is one photon

per 104 O atoms.

Page 26: Add to 6.1.4 Non-U.S. Facilities

The Centre National D'Etudes Spatiales (CNES) in Toulouse, France and the European

Space Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands, are part

of the European Space Agency. Both CNES and ESTEC have purchased the FAST TM

oxygen atom beam system from Physical Sciences, Inc. ofAndover, MA for materials

testing. National Space Development Agency of Japan (NASDA) has also recently

installed a FAST TM oxygen atom beam system.

Page 32: Add to BIBLIOGRAPHY

Caledonia, G. E.; Krech, R. H.; and Oakes, D. B.: "Laboratory Simulation of Low Earth

Orbit (LEO) Atomic Oxygen Effects." In Journal of the Institute of Environmental

Sciences, pp. 23-28, March/April 1996.
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TECHNICAL PUBLICATION

MATERIAL SELECTION GUIDELINES TO LIMIT

ATOMIC OXYGEN EFFECTS ON SPACECRAFT SURFACES

1. PURPOSE

This document provides guidelines in selecting materials for satellites and space platforms, de-

signed to operate within the low-Earth orbit (LEO) environment, which limit the effects of atomic oxygen

(AO) interactions with spacecraft surfaces. It serves as a revision of TM-100351.

AO is formed by solar ultraviolet (UV) radiation dissociating oxygen molecules (02) into free

oxygen atoms in the outer ionosphere from altitudes greater than 100 km. Oxygen atoms alone are highly

corrosive, combining with most materials they encounter (see figs. l a and l b). In addition, a spacecraft's

orbital velocity of 7.8 km/sec (17,500 mph) has the effect of exposing a spacecraft to a stream of AO at an

energy of approximately 5 eV. The atoms' ability to react with spacecraft materials can be enhanced by

solar UV radiation which energizes molecular bonds and makes AO reaction easier (noted as AO+UV).

Figure la. The severity of AO erosion is highlighted in these scanning electron microscope pictures

of samples that were exposed to space for 69 mo aboard the Long Duration Exposure Facility

(LDEF). Above are unexposed (left) and exposed (right) pictures of Beta cloth on the trans-

verse flat-plate heat pipe experiment. Beta cloth is a fabric made of woven glass fibers. While

the glass itself is highly resistant, AO has eroded the Teflon TM impregnated in the cloth.
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Figure lb. Close-up and extreme close-up views of Kapton ® (left) and Teflon -_ (right) from the solar array

materials experiment tray on LDEE An unexposed sample would appear smooth and virtually

featureless. Here, the Kapton ® is roughened, and the Teflon vM has cracked, forming holes that

can allow severe erosion inside the material as oxygen atoms ricochet before actually reacting

with a material,

This document should be treated as an introduction rather than a comprehensive guide since _|

analytical and flight technologies continue to evolve, flight experiments are conducted as primary or pig- i

gyback opportunities arise, and our understanding of materials interactions and protection methods grows. !
The reader is urged to consult recent literature and current web sites containing information about research __

and flight results.

_ £



2. SCOPE

This specification applies to LEO spacecraft, such as the International Space Station (ISS), which

use organic films, polymeric materials, and composite structures to reduce weight in structures, insulation,

and other components. The designer should consider that absolute protection from AO erosion is not pos-

sible. Rather, spacecraft should be provided with AO protection optimized for the AO environment

in which they will operate for the planned mission life, plus an operating margin to allow for variations

in orbital conditions or for reasonable mission extensions. Thus, spacecraft operating for short periods in

LEO and spacecraft bound for high orbits or interplanetary trajectories may require far less AO protection

than spacecraft designed to operate for several years at intermediate Earth orbits.

Geostationary, deep-space, and planetary spacecraft in general are not covered by this specification

since the oxygen populations in those environments are negligible. However, the designer should consider

the latest information on these environments before proceeding.



3. APPLICABILITY

Thisdocument is intended to establish guidelines to aid developers in materials selection. No single

material or set of materials will be the ideal solution for all spacecraft and missions. The degree of surface

degradation is directly proportional to AO fluence (total integrated flux). Fluence, in turn, is determined by

several factors, including:

• Spacecraft altitude--Oxygen populations decrease with greater altitude, although the density at

different altitudes wilI vary with the solar cycle or radiation exposure.

• Attitude--Surfaces in the ram or windward direction will be exposed the most, with exposure

decreasing by the cosine of the angle of incidence on surfaces away from the ram direction.

• Orbital inclination--High inclination orbits expose spacecraft to greater cosmic radiation

(near the geomagnetic poles and in the South Atlantic anomaly), which can have a synergis-

tic effect with AO and possibly to longer periods of solar UV.

• Mission duration--Longer missions mean longer exposure and the greater risk of failure due to

AO or AO+UV erosion.

• Solar activity--The Sun emits more UV and x rays during solar maximum (sunspots are associ-

ated with magnetically active areas) which directly affect spacecraft surfaces and also expand the

upper atmosphere, thus increasing AO populations at altitude.

Models are available on the Internet through the NASA Space Environments and Effects Program

to estimate AO fluence. From these, the developer may estimate surface erosion.

While AO can be extremely damaging, the other elements of the near-Earth space environment

should not be ignored. The developer should also keep in mind that the total, combined space environment

may affect materials in a variety of ways. Optical properties (solar absorptivity and thermal emissivity)

may change due to AO bleaching or UV radiation darkening. Polymeric films may peel due to thermal

cycling. In turn, this opens new surfaces that can be attacked by AO or AO+UV. The electrical conductivity

of a material may be affected by AO, resulting in spacecraft charging. The strength of composite structures

may degrade due to AO erosion of resin binders.

Materials selected for spacecraft and commercial satellites under development shall be reviewed

for susceptibility to AO interactions which produce surface erosion or degradation in optical and thermal

properties that may cause spacecraft systems to fail. Tolerable levels of degraded performance shall be

established by the spacecraft developer. Since the degree of surface degradation is directly proportional to

AO fluence (total integrated flux) and fluence, in turn, is determined by many environmental factors, ma-

terials deemed acceptable for one application may not be acceptable for other applications. Consequently,

rather than listing materials acceptable for spacecraft systems under varied sets of operational circum-

stances, this specification establishes guidelines to aid spacecraft developers in materials selection

and summarizes experiences from several recent spac e missions and ground-based simulations (sec. 4.2).
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As a spacevehicleorbits theEarth at orbital speed(7.8 km/secat low altitudes),it undergoes
energeticcollisionswith atomsandmoleculesin theorbitalenvironment.AO isthedominantspeciesin the
outerionospherefrom 200-700km (124-435mi) (fig. 2),becomingasmuchas90percentof the atmo-
sphereat 500km,atypical altitudefor ISS and future space platforms. Other atoms are present but are far
less reactive.

AO is produced by the photodissociation of 0 2 initiated by the absorption of near-UV solar

radiation. AO's concentration changes as sunspot activity varies during the l l-yr solar cycle (fig. 3,

table 1). This effect must be accounted for if long-lived operation of the spacecraft systems is to be

expected. Recent space flight experiments have demonstrated that many polymers, organic films, and com-

posite materials undergo significant mass erosion and changes in surface properties during exposure to

suprathermal (5 eV) AO. Mass is lost and surface properties change as the spacecraft collides at orbital

speed (7.8 km/sec) with AO within the Earth's upper atmosphere.

Figure 2.

AO Population Versus Altitude
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Gas populations vary widely with altitude and solar activity.

This graph shows the range for AO, the only gas species that

poses a significant erosion hazard for spacecraft.

Figure 3 shows the prediction for sunspot numbers through the current maximum solar cycle 23

with the actual counts for the previous cycle (22) overlaid on it. Sunspot numbers alone are not used in

solar cycle predictions. An important measure is a special calculation of radio emissions at 10.7-cm wave-

length (plotted on the right side) which corresponds closely with sunspot numbers. Predictions of solar

activity can vary widely from what the Sun actually does since our understanding of the solar dynamo is

imperfect. Note that the Zurich number for sunspots is a calculation that also considers size and position.
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Figure 3. Prediction for sunspot numbers: (a) solar cycle 23 prediction and (b) history of sunspot variation.
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Table l. Projected sunspot numbers, Cycle 23.

Year Jan I Feb Mar Apr May Jun Jul Aug

1997 8.1 t 10.1 12.5 15.3 18.6 22.2 26.3 30.7

1998 57.0 62.8 68.7 74.7 80.6 86.5 92.4 98.2

1999 124.9 129.7 134.2 138.4 142.4 146.1 149.6 152.7

2000 164.0 165.3 166.4 167.1 167.6 167.8 167.7 167.3

2001 161.6 159.8 157.8 155.5 153.1 150.5 147.8 I44.9

2002 128.6 125.1 121.5 117.9 114.2 110.5 106.8 103.0

2003 84.6 81.1 77.5 74.1 70.7 67.3 64.1 60.9

2004 46,4 43.8 41,3 38.8 36.5 34.3 32.1 30.1

2005 21.3 19.8 18.4 17.1 15.8 14.6 13.5 12.5

2006 8.2 7.5 6.9 6.3 5.8 5.2 4.8 4.3

Sep

35.5

103.9

155.6

166.6

141.8

99.3

57.8

28.2

11.5

4.0

Oct

40.5

109.4

158.1

165.8

138.7

95.6

54.9

26.3

10.6

3.6

Nov

45.8

114.8

160.4

164.6

135.4

91.9

51.9

24.5

9.7

3.3

Dec

51.4

119.9

162.3

163.2

132.1

88.3

49.1

22.9

8.9

2.9
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4. ATOMIC OXYGEN EFFECTS

Most of the data related to the behavior of materials in the AO environment are obtained from

experiments aboard the U.S. Space Shuttle and the LDEE New data are emerging from studies with instru-

ments carried aboard Russia's Mir Space Station, and equipment replaced on the Hubble Space Telescope

(HST). Extensive data will be gained from operational experiences with the ISS as it operates for up to

30 yr in LEO. These flights are summarized in section 4.1.

In section 4.2, all material samples listed as exposed to AO, whether orbital or simulated, have been

evaluated for mass loss due to surface erosion. Most of the data obtained from AO exposures are in terms of

AO reactivity, a property defined as thickness of material lost, normalized to total AO fluence. Fluence of

flight experiments was obtained from atmospheric models, spacecraft velocity, and exposure bistory. If the

particular material in question contained AO-impervious fillers, the matrix material became shadowed or

protected from impingement by the fillers and consequently, mass loss rates changed with time. For these

samples, mass loss per unit area is typically reported. Because only a summary is presented here, the

designer should consult primary references (see bibliography) for details of results and methods.

4.1 Flights

4.1.1 Long Duration Exposure Facility

The LDEF was the largest satellite yet flown for the express purpose of using the space environ-

ment as a laboratory for exposure tests (fig. 4). The LDEF carried several thousand samples in 86 trays (72

on the sides and 14 on the ends) attached to a 12-sided frame, 4.3-m (14-ft) wide and 9. l-m (30-ft) long.

The LDEF was stabilized by a special damping device that held one face in the ram direction throughout

the mission.

The LDEF was deployed by the Space Shuttle on the STS 41-C mission in April 1984. Its initial

orbit was about 470-km high and inclined 28.5 deg to the equator. At that time its mission was to last 9 too.

The loss of Space Shuttle Challenger in January 1986, and the subsequent downtime for the Shuttle fleet,

postponed retrieval until STS-32 in January 1990. By then the orbit had decayed to 296 x 36I km. Total

AO exposure was 9 × 1021 atoms/cm 2 in the ram direction. About 75 percent of this was experienced in the

last 6 mo of the mission as orbital altitude decreased.

Because many of the experiments were designed for a stay of less than a year, many were exten-

sively or completely eroded. Nevertheless, the LDEF is the best single database for understanding AO

effects and has resulted in several volumes of published data.

8



(b) Traysbeforeflight

(a)LDEF (c) Traysafter retrieval

Figure 4. The LDEF (a) carried several hundred samples in 86 trays such as the AO171 tray of AO expo-

sure samples, (b) shown before flight and (c) after retrieval 69 mo later. Note the extensive loss

of polymeric film samples. Also, three of four solar array coupons had complete failure of the

Kapton ® tape attaching them to the tray. Two coupons were lost and the third was later found in

the Shuttle payload bay.

4.1.2 Effects of Oxygen Interactions With Materials

The Space Shuttle carried the Effects of Oxygen Interactions with Materials (EOIM) experiments

on flights STS-8, 41-G, and 46. On EOIM-III (STS-46), samples of paints, anodized aluminum, and Beta

cloth were exposed to AO, UV radiation, thermal cycling, and hard vacuum (fig. 5). The samples were on

trays, with some trays providing thermal conditioning at 60, 120, and 200 °C. The trays allowed samples to

be exposed passively to AO only and to AO+UV. AO fluence was 1.0-3.5 x 1020 atoms/cm 2 over a period

of 42.5 hr at an altitude of 229 km (143 mi). Specimens included bulk, polished, and single-crystal silver

and copper; anodized aluminum, aluminum/lithium alloys, dry film lubricants, metals, thermal coatings,

and selected polymers. Six atomic oxygen resistance monitors (AORM) were included (see sec. 7.3).

9

f\

J



k

Figure 5. The EOIM-III experiment, flown on STS-46, included several sets of samples,

with and without heaters, for exposure to the orbital AO environment.

4.1.3 Hubble Space Telescope

The HST is revisited every 2-3 yr for maintenance and refurbishment. This provides an opportunity

to study exposed items which are returned to Earth and to inspect the exterior of the spacecraft. Hubble was

deployed at an altitude of 610 km (381 mi) and at an inclination of 28.5 deg--an orbit similar to the

LDEF's--on April 25, t990. During the HST's first 3.6 yr in LEO, it was exposed to an estimated AO

fluence of 7.59 x 102o atoms/cm 2 in the ram direction (unlike the LDEE the HST is frequently pointed at

different targets, so no one surface was in ram the entire time).

The HST has been serviced twice, by STS-61 in December I993 and STS-82 in January 1997

(a third mission is scheduled for early 2000). Among the tasks for the crews on the first mission were

replacement of several components exposed to space, including both solar arrays (only one could be furled

and returned to Earth), the wide-field/planetary camera (with a radiator plate exposed to space), and two

magnetometers (their multilayer insulation (MLI) was returned). The STS-61 crew observed micromete-

oroid debris and pitting damage. Yellow paint on the handrails was observed to come off as paniculate

matter when force was applied to the rails. This was likely due to erosion of the polyurethane binder. The

MLI blankets appeared to be stretched tight. During replacement of the rate sensor unit, a 7.5-cm (3-in)

square of MLI was seen floating over the starboard wing. More than 6,000 photos were taken on orbit for

use in studying the condition of the HST (fig. 6). Analysis continues and results will be made available by

NASA's Goddard Space Flight Center.

10



(a)MLIdegradation

(b)HSTexterior (c) Repairpatches

Figure 6. To protect areas where MLI was degraded by AO+UV (a), the exterior of the HST (b) had MLI

repair patches (c) applied by astronauts in January 1997 (STS-82).

4.1.4 Other Spacecraft

A limited number of other satellites carry instruments that provide limited data on AO effects on the

spacecraft. The Extreme Ultraviolet (EUV) Explorer, for example, carries several quartz crystal microbal-

ances that precisely measure the remaining quantity of a coating on the surface. This was done to help

gauge AO effects on the satellite's optical surfaces. The Tropical Rainfall Measurement Mission, launched

on Nov. 28, 1997, carries a coatings and environmental effects monitor designed to gather data character-

izing the response of materials in a high-density AO environment. The Solar Maximum Mission spacecraft

was launched in February 1980 into a 570-km (357-mi) 28.5-deg orbit. The spacecraft was repaired during

the STS 41-C mission in April 1984, where it had decayed to an orbit of 488 km (305 mi). MLI blankets,

a thermal radiator, and louver assemblies exposed to an AO fluence of approximately 2 × 1021 atoms/cm 2

were returned to Earth for analysis.

4.1.5 Other Shuttle Missions

The NASA Langley Atomic Oxygen Experiment (AOE) consisted of materials provided by the

Boeing Company, College of William & Mary, and NASA Langley. The samples were exposed to the space

environment during the entire STS-85 mission and were oriented along the Shuttle orbital velocity vector

for 40 hr. Data analysis is under way. The AOE samples consisted of candidate lubricants, paints, thermal

control coatings, structural materials, and AO-resistant materials for use on the ISS, plus contamination

witness plates (fig. 7). The materials included MLi, fluorosilicone, Kapton ®, aramid, silverized Teflon TM,

coated silverized Teflon TM, graphite composite, Viton, silicone, white paint, AO concentrators, and a solar

focusing device.
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Figure7. A portion of theAOE samples--includingcones(right) to concentrateAO on
samples--flownonSTS-85,shownherebeforeinstallationon theSpaceShuttle.

TheConsortiumfor MaterialsDevelopmentin Spacein Huntsville,AL, hasflown severalsmall
payloadscalledCONCAPConsortiumfor MaterialDevelopmentin SpaceComplexAutonomousPayload
for low-gravity materialsscienceexperiments.At leasttwo havecarriedAO sensitivematerialson the
exteriorfor exposureduring flight.

4.1.6 Mir Environmental Effects Payload

At this writing, NASA and its partners are evaluating samples that were placed aboard Russia's Mir

Space Station by the STS-76 mission in March 1996 and removed in October 1997 by the STS-86 mission

(fig. 8). The various Mir Environmental Effects Payload (MEEP) components were mounted at different

positions around the U.S.-built docking module and thus were exposed both to space environmental effects

and to spacecraft-induced environmental effects, principally those of Shuttle docking and operations.

MEEP included two passive optical sample assemblies (POSA) designed to assess the magnitude

of molecular contamination on ISS critical surfaces and quantify the performance and degradation rate of

candidate/baseline ISS exterior surface materials. Both POSA I and II comprise various passive sample

trays, carousels, and plates, as well as vacuum UV diodes and AO pinhole cameras. Many of the various

materials chosen for exposure are currently planned for use on the ISS. POSA I was developed by NASA

Marshall Space Flight Center (MSFC) and POSA II by Boeing Defense and Space Group.
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TheAtomic OxygenResistantPolymers(AORP)experimentis oneof theexperimentscarriedby
theopticalpropertiesmonitor (OPM) attachedto theexteriorof Mir. The AORP experiment objective is

to measure the performance of AORP when exposed to the space environment for approximately 1 yr.

The OPM was retrieved from Mir by STS-89 and is being analyzed. These materials also flew on STS-85

Evaluation of Space Environment and Effects on Materials (ESEM) payload and have flown on STS-46
and 51.

Figure 8. An astronaut prepares to remove one of the MEEP

elements from the Mir docking module during the
STS-86 mission.

4.1.7 International Space Station

Further long-duration exposure opportunities may become available as ISS is developed, either

through study of items that are repaired during normal operations or through possible experiment facilities.

4.2 Materials Effects

Thousands of material samples have been exposed to AO either as part of a flight experiment,

recovered material from a repair mission, or in a laboratory simulation of the LEO environment. These

materials have been exposed to a minimum of 1 x 102o atoms/cm 2 to ensure a full response to the AO

attack. This is roughly equivalent to a spacecraft operating at 500-600 km (310-372 mi) orbit during

nominal solar activity conditions for periods of at least 1 yr. These materials, with lessons learned, have

been divided into the following categories: organic, metallic, nonmetallic, optical coatings, and thermal

control coatings.
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4.2.1 Organic

Polymers and other organics are, by far, among the most vulnerable materials when exposed to AO.

Generally, unfilled materials containing only C, H, O, N, and S react with approximately the same reaction

efficiency, or volume loss per atom of 1 to 4 × 10 -24 cm3/atom. Perfluorinated carbon-based polymers and

silicones have lower reaction efficiencies by a factor of 10 or more than organics.

Tables 2 and 3 give overviews of AO effects on p0iymers on several flight experiments as well as

laboratory simulations at Princeton Plasma Physics Laboratory (PPPL) and the NASA MSFC atomic oxygen

drift tube system (AODTS). The facility at PPPL (sec. 6.1.3) more closely approximates orbital AO and its

impact energy but adds vacuum ultraviolet (VUV) radiation that has a significant effect on fluorinated

ethylene propylene (FEP) Teflon's TM AO reaction efficiency. The AODTS (sec. 6.1. l) produces AO with

less than 0.01 eV energy, therefore AO reaction efficiencies are less than that encountered on orbit. Ground-

based facilities are excellent tools for material durability predictio n p r(?yided that the sensitivity of particu-

lar materials to conditions such as VUV, flux, and fluence are taken into account.

Table 2. Overview of AO reaction efficiencies of 9olymer films (10 -24 cm3/atom) on several flights.

Sample STS-5

3.0

Halar (bulk)

Lexan®

PEEK(bulk)

Tefzel

Kapton® HN

Kapton® H

Black Kapton®

TFE

FEP

<0.05

<0.05

STS 41-G l LDEF

1.0-2.0 2.1

1.3-3.6

4.7 2.3

0.20

3.3

0.20

3.1-2.4 0.35

STS-46 PPPL MSFC

3.0-3.4 0.014-0.0342.0-2.5

3.6-4,0

2.0-4.0

=1.0

3.3-4.3

3.5-3,9

2.1-2.7

0.049-0.080

0.082-0.082

2.8-3.0

3.4

5.9-6.6

0.11-0.12

0.023

From Kamenetzkyet al. SeveralData Points Summarized
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Table 3. LDEF (AO171) and general Space Shuttle postflight polymer/AO properties.

Polymer

WhiteTedlar

TFETeflonTM

FEPTeflonTM

PEEK

Halar

Kevlar29

Kevlar49

Reactivity,
10-22mg/atom

LDEF

0.29

0.20

0,35

2.3

2.1

1.5+ 0.5

4.0

Shuttle

<0,05(est.)

<0.05(est.)

3,7 +1.0

2.0

1.1 +2*

Comments

Inertparticlesretardederosion

DataFromS0069

*Basedon STS-8TetherMassLoss

Polysulfone 2.3 2.4

Filled or composite materials have reaction efficiencies that are strongly dependent upon the char-

acteristics of the fillers. Composites of S-glass/epoxy showed erosion of the epoxy only; the glass fibers

prevented much damage from occurring. Darkening of the S-glass/epoxy samples is probably due to UV

effects. Lessons learned from LDEF experiment A0I 71 graphite/epoxies included the greater AO suscep-

tibility of the epoxy matrix compared to the carbon fiber in HMF 322/P1700, HMS/934, and P75S/934

systems (fig. 9). AO erosion increased the optical diffuseness of the surfaces and formed a porous gray ash

on the composite surfaces, especially the polysulfone materials. Mass loss was consistent with the mea-

sured thickness loss of about 1 ply. AO reaction efficiencies for the AO17I composite samples are given in

table 4.

The EOIM-III experiment carried an array of polymers, including Kapton ® H and HN types, black

carbon-impregnated Kapton ®, various coatings on Kapton ®, Lexan ®, Tefzel, tetrafluoroethylene (TFE),

and FEP Teflon TM. Among the lessons learned from EOIM-III was that AO-induced changes in the con-

ductivity of black Kapton ® proved to be a reliable gauge of AO fluence. No definitive difference in AO

reactivity was found between Kapton ® held in tension and unstressed Kapton ®. Coatings of hexamethyl

disiloxane and indium tin oxide were successful in protecting the underlying Kapton ® from AO attack.

Also included on EOIM-III were candidate ISS seal materials viton V747 and silicone $383, which were

slightly eroded from AO exposure.

On LDEE EOIM-III and other space flight exposures, FEP MLI showed damage from space envi-

ronmental exposure. Cracking occurrences and hardness increased and elongation decreased with more

solar exposure. FEP is still acceptable as a thermal blanket material, provided no in situ deformation oc-

curs. A suitable backing may be adhesively applied to the FEP layer to maintain structural integrity.

The experience with the EUV explorer was unique in that the spacecraft was held in one altitude for

215 days while the spacecraft was prepared for its observing mission. Then it was rotated, changing the

ram direction relative to the spacecraft surfaces. At the spacecraft's 500-kin high orbit the ram face was

exposed to an estimated 1.18 x 1021 atoms/cm 2.
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One of the important lessons from LDEF is that small defects

in the surface of a material can result in much larger damage. AO

does not immediately react with the first surface it encounters but

can ricochet and carve out a large cavity behind a small aperture.

Table 4. AO erosion rates for composites, LDEF (AO171), present a new

challenge in combatting AO effects.

CompositeMaterials AverageThickness AOReactionEfficiency,
Loss(mils) 10--24cm3/atom

HMF322/P1700/+45°

HMS/934/0

HMS/934/90

P75SI934/90

P75S/934/0

"S"Glass-epoxy

2.5-6.2

2.5

2.7

2.7

2.8

0.36

0.9_2.3

0.92

1.0

1.0

1.0

0.13

Shuttle:Graphite/epoxy reactivity 2-2.6 × 10-24 cm3/atom

=

E

=



The thermally controlled quartz crystal microbalances (TCQM) showed a 30-fold increase in ero-

sion of Teflon TM during exposure to UV, from 1.86 to 55.8 × 10-26 cm3/atom. However, the erosion rate

eventually decayed to the pre-UV rate. It is believed that the UV broke the polymer bonds and opened sites

susceptible to AO erosion. After those had decayed, only hardened sites resistant to AO erosion were left.

4.2.2 Metallic

In general, metals, except for silver and osmium, do not show macroscopic changes. Microscopic

changes have, however, been observed and should be investigated for systems very sensitive to surface

properties. The reactions of metals to AO vary widely with the metal itself and with the final surface

preparation it has been given. Also, accommodation is strongly dependent on temperature and stress. Silver

and osmium react rapidly and are generally considered unacceptable for use in uncoated applications.

Silver has been used as a surface on which to record AO exposure passively. The LDEE for example,

carried a pinhole camera comprising a small dish lined with silver. The centroid of the eroded area in the

dish served as a measure of the LDEF's mean attitude throughout the mission (table 5). Pure silver is

highly reflective, but its oxide is black and has a far higher emittance (infrared (IR) reflectance equals 1

minus emittance).

Most alloys of aluminum have proven to be resistant to AO, although a chromic acid anodized

sample carried on the 120 °C tray on EOIM-III showed more mass loss than expected. A surprise was a

significant mass loss in 2090 aluminum/lithium alloy. The lost mass was lithium and was more severe at

elevated temperatures. Other metals carried on EOIM-III fared well, with mass losses apparently due to

water vapor outgassing rather than AO effects (table 6).

Table 5. LDEF (AO17 l) AO exposure covered a number of pure and alloyed metals.

ReactionEfficiency Accomodation
Metal 10-2scm3/atom AO/IO 4 atoms

Copper 0.87 3.6
Molybdenum 0.14 2.8
Tungsten 0.044 -1.0
HOS875 0.29 2.5
Pre-OxHoS875 TBD TBD
Tophet30 0.55 5.0
Ni-Cr-AI-Zr - -
Tantalum 0.60 8.3
Titanium75A 0.39 4.4
MgAZ31B 0.45 2.0
Niobium 0.14 2.0
SilverDisk,FineGrain 2.9 8.4
SilverCold-RolledRibbon
inStressLoop 27.5 80.0
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4.2.3 Nonmetallic

Table 6. EOIM-III carried a number of pure metal samples and two alloys.

PureMetalsMassLossandOpticalProperties,EOIM-III

Sample
Tray(°C)

Copper 60
120

Gold 120

Nickel 60
120

Niobium 60

Silver

Tantalum

120

60
120

Tungsten 60
120

200

Vanadium 60

120

Aluminum/ 60

Lithium 120

Am
(mg,

+_0.02)

-0.03
-0.07

+0.01

-0.05
-0.05

-0.05
-0.03

+0.23

-0.05
-0.01

-0.15

-0.02

-0.04

-0.42
-0.04

-0.51
-0.53

Weldalite -0.15
(Passive) -0.17

Am
(mg/cm2,
_+0.03)

-0.042
-0.098

(z=absorptance,e=emittance,

+0.014 0,t9

-0.071 0.33
-0.071 0.33

-0.071 0.33
-0.042 0.33

+0.323 0.11

-0.071 0.38
-0.014 0.38

-0.210 0.46
-0.028 0.46
-0.051 0.46

-0.589 0.68
-0.051 0.64

-0.155 0.15
-0.162 0.15

-0.090 0.13
-0.102 0.13

El=initial,el=flight,

a/ at ei ef
(+_O.Ol)(+_O.Ol)(+_O.Ol)(+O.Ol)

0.49 0.56 0.01 0.03
0.47 0.52 0.02 0.03

0.18 0.02 0.02

0.34 0.02 0.02
0.31 0.02 0.02

0.34 0.03 0.03
0.34 0.03 0.03

0.80 0.01 0.46

0.39 0.03 0.02
0.37 0,03 0.02

0.48 0.02 0.02
0.46 0.02 0.02
0.55 0.02 0.01

0.70 0.06 0.05
0.66 0.06 0.06

0.14 0.05 0.05
0.14 0.05 0.05

0.15 0.05 0.05
0.13 0.06 0.05

The most commonly used nonmetallic, inorganic material is Beta cloth, a fabric woven from fine

quartz threads. !i r_i sts mechanical wear as well as AO and AO+UV attack. However, many forms of Beta

cloth are impregnated with Teflon TM or silicone-based materials to lubricate the threads so the fabric bends

easily during handling without the threads abrading each other. Both the Teflon TM and other materials can

be eroded by AO and AO+UV exposure. Glass generally resists AO attack well.

Solar concentrators and energy dispersion systems require reflection of solar radiation. Reflector

materials, such as those flown on LDEF (A0171), are usually tailored for highly efficient reflectance in

the near-UV to near-IR wavelengths (250-1,400 nm). Aluminum, enhanced aluminum (multiple layers

of aluminum and silver), silver, silver alloys, and Other reflector configurations are protectively coated

with glassy ceramics. AO reaction efficiencies ranged from 0.4-2.3 × l0 -28 cm3/atom for silicon oxides,

magnesium fluoride, and aluminum oxides. An increase in film density was noted for SiO-SiO 2. Small

decreases in reflectance were noted, except for MgFz-sapphire over silver, which had noticeable degrada-

tion (table 7).
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Table 7. Changes in LDEF (AOI71) glass ceramics.

Coating/Reflector

MgF 2 Sapphire/Ag

Dielectric/Ag Alloy

Si0-Si02/Enhanced AI

SiO/AI

SiO2/Ag

Changein
SolarReflectance

-2

-1.5

<-1

Decreasein

FilmThickness(1)

150

160

125

150

4O

SiO2/AI <-1 50

MgF2-Sapphire/Enhanced AI +1.5 25

4.2.4 Optical Materials

The performance of optics in the AO environment can be mixed. While most glasses generally

resist AO erosion well, their coatings can be highly vulnerable. Since the performance of most optical

systems depends on coatings of various types, this is an area of great concern.

EOIM-III carried a number of optical materials, including EUV filters, metal foils, VUVAJV win-

dows, and candidate reflector configurations for the Advanced X-Ray Astrophysics Facility. Erosion of

reflective surfaces could greatly roughen the mirrors which must reflect x rays at grazing incidence angles.

Zerodur substrates were coated with gold, iridium, platinum, or nickel, with and without chrome under-

coats and exposed on the passive trays. Gold mirrors with nickel undercoats were flown on the heated

trays. The passively exposed gold, iridium, platinum samples showed little change, but both the control and

flight nickel mirrors showed significant oxide formation with accompanying degradation of reflectance in

the VUV wavelengths. The gold mirrors flown on the heated trays were affected by migration of the nickel

overcoating and also had degraded reflectance (table 8).

EOIM-III also carried optical thin films which are used to coat optical systems to improve their

performance. The samples comprised fluorides of magnesium, calcium, and lithium plus sodium salicy-

late, a luminescing phosphor. The coatings showed no significant loss, but the sodium salicylate showed

significant surface roughening and a 50-percent decrease in VUV luminescence.

To avoid AO problems, the Rosat x-ray astronomy satellite used boron carbide to protect the filter

system on the EUV wide-field camera (Kent et al.). Rosat orbits at 580 km (360 mi) where AO erosion is

strong. The camera comprises nested grazing incidence mirrors with filters--such as carbon, beryllium

and aluminum--bonded to a Lexan ® substrate. From previous experience and experiments, the lifetime

(time to lose 10-percent thickness) of unprotected Lexan ® is between 23 min and 173 days, depending on

the reflectivity of the grazing incidence mirrors with respect to AO. To protect the wide-field camera's

filters, several protective coatings were investigated before boron carbide was selected.
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Table 8. Thin film optical properties carried by EOIM-III.

Sample

Gold

Passive tray
60 °C
120 °C
200 °C

Platinum

Passive tray

Iridium

Passive tray

Nickel

Passive tray

SolarAbsorptance,as Infrared Emittance, E/R

Control Exposed

0.20
0.17
0.17
0.18

021
0.17

0.17
0.23

0.24 0.25

0.24 0.25

0.31 0.31

Control Exposed

0.07 0.07
0.03 0.03
0.06 0.06
0.O5 O.O4

0.06 O.O7

0.11 0.12

0.05 0.08

On glasses themselves, no changes are observed for short exposures. On LDEE an SiC-SiC 2

increase in film density was noted. Defects were observed on all reflective surfaces except SiO2/AI where

a Small decrease in reflection was measured. Reactivities ranged from 0.4-2.3 x 10 -28 cm3/atom.

4.2.5 Thermal Control Coatings

In general, thermal control coatings with organic binders such as polyurethane should not be

selected for long-term AO exposure. These binders degrade, leaving only pigment particles which then

become a contamination hazard. During the STS-61 mission to repair the HST, Z-853 yellow paint on the

handrails came off as particulate matter when force was applied to the rails. Ceramic-based paints, such as

Z-93, have been found to be quite durable in the space environment, but these paints have their own

problems with molecular contamination absorption and difficulty in applying (table 9).

Table 9. During STS-41-G, several overcoated paint samples were tested on the Space Shuttle's

robot arm.

Material
Overcoat

Absorptance (cO
Flight Specimen
Control Value

Mass Loss

Comments

Z-302 GlossyBlack

OI 651 RTV-602 MN41-1104-0

0.972
0.972

None

Maintains specular
character

0.969
0.973

Negligible

Lost specular character

0.970
0.972

Negligible

Lost specular character

Note:Applying an overcoat to these paints increases initial absorptivity.

2O

Z-853 GlossyYellow

MN41-1104-0

0.469
0.458

Negligible

Lost specular character;
slight a increase partially
due to UV darkening



The Chemglaze and Aeroglaze families of paints are widely used in various spacecraft applications.

EOIM-III carried several polyurethane paint samples, including Chemglaze A-276 and Z-306, and

ceramic-based Z-93 and YB-71, anodized aluminum, and Beta cloth. Chemglaze A-276, for example,

was almost twice as reactive in the presence of AO+UV as it was to AO alone. Most of the anodized

aluminum samples were unaffected and the Beta cloth lost its Teflon TM matrix at a rate comparable with

other missions. Several paint samples showed flaking apparently caused by sample fixture rubbing the

material during flight.

Several developmental paint samples also were flown, including:

• A zinc oxide with potassium silicate binder. It varies from Z-93 with finer zinc oxide particle

size and a pigment-to-binder ratio adjusted for lower solar absorptance; exhibited no color change

or surface texturing; slight quenching of fluorescence was noted.

• Zinc orthotitanate with potassium silicate binder. It was formulated similar to zinc oxide devel-

opmental paint; no color or surface changes; black light fluorescence did not appear to change.

• Doped silica black ceramic paint, which did not appear to be affected by exposure.

The A0034 trays on LDEF carried several thermal control coatings including S 13G, S I3G-LO,

Z93, YB-71 (zinc orthotitanate), and the polyurethane-based A276 and Z306 paints. Z306, a black paint,

showed little change. The coatings were exposed directly to space or exposed only to UV through quartz

windows. A276, a white paint, suffered complete erosion of the polyurethane binder yet remained reflec-

tive where UV exposure was diffuse. Minimal direct exposure, though, severely affected the

paint (table 10).

Table 10. LDEF (AO 171) and Shuttle postflight paint properties.

Paints

Z-306 Black Diffuse

Z-302 Black Specular

Z-853 Yellow Diffuse

A-276 White Diffuse

401-C10 Black Diffuse

Tiodized Dt7 White

Tiodized K17 Black

S13GLODiffuse White

Solar Absorptance,as

Control

0.99

0.97-0.99

0.41-0.49

0.24-0.28

0.98-0.99

0.38

0.96

0.19

Change, A

LDEF ShuHle

-0.010 -0.202

-0 0.040

-0.070 0.040

-0.050 =0

3.7±1.0 1.5±0.5

0.030 Unavail.

-0.15 Unavail.

0.14 1.1±2

Reactivity,

10-22 mg/atom

LDEF Shuttle

2.3 1.0

5.7 5.8

1.4 0.90

1.4 1.0

1.6 0.86

Unavail. -

Unavail. -

Neg. Neg.
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5. DATABASES

|

As experience is gained with AO exposure, NASA, its contractors, and other organizations are

compiling their results in various databases. For the most part, NASA databases are available to all Federal

agencies and NASA contractors. Corporate and non-U.S, databases also may have restricted availability.

The major limitation of the current reaction rate database is that AO fluence to which the recession

rates are normalized is not precisely known. AO number densities used to compute fluence for previous

space flight missions were obtained using thermospheric models to predict atmospheric constituent con-

centrations as functions of altitude, time of year, Earth latitude and longitude, local solar time, and solar

activity conditions. Typically, errors of as much as 25 percent or more can be expected for the density

estimations, and since they are used to compute fluence, these errors also appear in the surface recession

rates for satellite simultaneously with recession measurements during future flight experiments.

5.1 Space Environments and Technology Archive System

The Space Environments and Technology Archive System is maintained at NASA's Langley

Research Center in Hampton, VA. Through it, data, publications, and the status of materials exposure

experiments and investigations are available on the worldwide web (see INTERNET WEB SITES, p.35).

AO-related databases include LDEE MEEE the AORP experiment, the ESEM, the European Retrievable

Carrier, and the HST database. Other databases of interest include the Clementine Deep Space Probe

Science Experiment, the Meteoroid and Debris Impact Monitor, the Meteoroid Impact Sensor, and the

Microparticle Impact Detector.

5.2 Boeing Database

The Boeing Company maintains an extensive database available through its facilities in Seattle,

WA. Boeing's Solar Shadow (SOLSHAD) program predicts solar exposure to satellite surfaces which may

shadow or reflect on one another. It is written in FORTRAN and runs under Sun operating system (OS),

UNiX. The sourcecode is available oniape. Data are input as a geometry description, materials properties,

and ram direction through an interactive data file builder. Results are output as tabular, graphical output of

AO flux on shadowed surfaces. Solar exposure was compared to independent calculation to verify the

program. For information, contact:

Dr. Gary Pippin, M/S 82-32

Boeing Defense & Space Group
EO. Box 3999

Seattle, WA 98124-2499

(253-773-2846; Ha ro Id. Pippin @ PSS. Boeing. corn)
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5.3 Canadian Database

The University of Toronto ! with the aid of the Canadian Space Agency has developed a com-

prehensive database for the properties of black, white, reflective, and transmissive spectrally selective

surfaces, including an oxygen exposure effects module. Features include:

• Optical, thermal, mechanical and physical, electrical, and chemical properties

• Space- and ground-based environmental/contamination effects on the properties listed above

• References from published and nonpublished literature

• Background information on applications, construction types, and precedents

• Manufacturers' data and vendor information for commercially available products, background

information applicable, current measurement facilities, and consulting services.

For information, contact:

Susan H.C.E McCall

Institute for Aerospace Studies

University of Toronto

4925 Dufferin Street

Downsview, Ontario, Canada L3T 3RI
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6. GROUND-BASED SIMULATIONS

6.1 Atomic Oxygen Exposure Simulators

At this writing, no ground-based facility can fully simula!e orbital interactions with materials.

Nevertheless, several facilities provide exceptional service in simulating AO and AO+UV effects.

6.1.1 MSFC

Two AO exposure facilities are operated at NASA/MSFC in Huntsville, AL. The AODTS can

produce up to 5 × 1016 atoms/cm2/sec neutral oxygen atoms 0f!ess than 0.1 eV thermal energ;¢. Tqae AO

plasma is produced by a 14.7-MHz r-f field. However, the sample fixture is located external (downstream)

of the generated plasma. This eliminates the problems of r-f field heating and the ionic plasma. Near UV

(200-400 nm) or VUV (118-200 nm) radiation sources may be added for synergistic studies.

The Atomic Oxygen Beam Facility (AOBF) more closely approximates orbital AO than the AODTS.

It uses a 2.45-GHz, 2-kW r-f field to generate plasma which is confined by a 4-K gauss magnetic field

to increase the flux. Ions are neutralized by collision with a metal plate. The AOBF can produce 5 eV AO

at 2 x 1016 atoms/cm2/sec. VUV radiation equivalent up to 15Osuns may be added !fig. 10).

Figure 10. NASA MSFC's (a) AODTS and (b) AOBF.

Samples are fully characterized before and after exposure. The Space Environment Effects Team

can measure mass changes in tens of micrograms, solar absorptance, IR emittance, VUV reflectance, VUV-

IR transmission, Fourier transform IR spectroscopy, spectrofluorescence, bidirectional reflectance distri-

bution function, surface roughness, and electrical conductivity.
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6.1.2 Lewis Research Center

The Space Environment Effects Laboratory at NASA's Lewis Research Center in Cleveland, OH,

includes an AOBF which provides the largest capacity for AO exposure globally; i.e., across the entire

sample. It provides accelerated rates of exposure to directed/scattered beams of AO and VUV radiation and

in situ optical characterization. The chamber has a 10-6-torr base operating pressure.

Various materials can be exposed with uniform flux over approximately 30 cm 2. An electron-

cyclotron resonance plasma source operates on pure oxygen to generate low-energy beam, predominantly

of neutral AO with ion content of less than 1 percent at energies less than 30 eV. The AO arrival flux is

controllable within range of 1015-1017 atoms/cm2/sec. Total fluence can be up to 1.6 x 1021 atoms/cm 2.

To evaluate synergistic effects of AO, VUV radiation emitted by source can irradiate samples or be

blocked allowing only AO exposure. Deuterium lamps provide a second source of VUV radiation with

intensity levels of 115-200 nm of 3-5 equivalent suns. Specimens can also be heated and experiments can

run, fully automated, for up to a month.

6.1.3 Other U.S. Facilities

A number of facilities in the United States can simulate space AO effects, although AO and AO+UV

capabilities are provided as part of a larger suite of physical effects. The University of Alabama in Hunts-

ville has a Surface Science Interaction Laboratory with an AO generator comprising a microwave

discharge cavity to produce an AO beam at 0.2-5.0 eV and a fluence of 5 x 1014 atoms/sec.

Researchers at PPPL use a plasma source to produce extremely high flux, neutral atomic beams

covering the 1-50 eV hyperthermal energy range. Beams of neutral atoms, including reactive gases such as

oxygen, nitrogen, and hydrogen, have impinged on a variety of technically important materials to measure

the rates of interaction. Work has included the evaluation of the erosion rates of spacecraft materials by

5-eV neutral AO. The PPPL source can duplicate many aspects of more than 6 yr of actual orbital exposure

in less than 40 hr of laboratory time. The facility has recently been modified to study AO+UV effects. It can

produce anAO flux of 5.6-20 × 1015 atoms/cm2/sec, and a fluence of 6-23 x 1019 atoms/cm 2. Experiments

allow independent control of the flux and energy of the beam and of the intensity and wavelength of the

light from the UV to the IR.

The U.S. Air Force Phillips Laboratory at the University of Southern California (USC) has devel-

oped an AO facility at USC. It produces AO at 5-80 eV and up to 1015 atoms/sec. The U.S. Air Force also

is planning an AO facility for Arnold Engineering Development Center in Tullahoma, TN, for test cell and

laboratory applications.

Other facilities in the United States include the Atomic Oxygen Exposure Facility at the Space

Power Institute, Auburn University, Auburn, AL; ATOX Irradiation Services, Los Alamos National Lab-

oratory; Lockheed Martin (originally at General Electric Space Division); the Jet Propulsion Laboratory;

and the University of Texas at Austin.
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6.1.4 Non-U.S. Facilities

The space agencies and industries of Canada, Europe, Japan, and Russia have a number of AO and

space simulation facilities. A comprehensive list is not available, so only a few details can be presented

here.

A microwave discharge-type facility is available at the University of Toronto's Institute for Aero-

space Studies. It reportedly mimics LEO exposures accurately, although performance specifications

are not available. Resonance Ltd. of Barrie, Ontario, Canada, has developed an atomic oxygen exposure

and measurement system which provides an AO fluence equivalent to 2 × 1016 atoms/cm2/sec, and also

provides simultaneous UV and VUV illumination.

Japan's Ultra-High Temperature Materials Research Center_esearch Institute has an oxidation/

sublimation testing machine that uses a quadrupole mass spectrometer to measure outgassing from

30-mm 2 samples as they are exposed to AO and UV in a vacuum. Specimens may be heated to up to

2,300 °C by a xenon lamp and measured by an electronic mass balance to 0.1 mg.

A Surface Analysis System at the Jenoptik Technologie GmbH, Jena, Germany, comprises three

similar vacuum chambers arranged in series. The simulation modules, on the ends, include xenon, deute-

rium, and VUV lamps. The analysis module, in the center, includes an x-ray photoelectron spectroscopy,

auger electron spectroscopy, and secondary ion mass spectroscopy.

6.2 Laboratory Exposure Guidelines

Regardless of the technology or platform used to simulate the AO environment, test procedures

should include the following recommendations to ensure adequate exposure and consistent results:

1. Clamping techniques used to hold the specimen within the holder should not produce high

levels of stress at the holder-specimen interface. Previous flight results have demonstrated induced stress

tends to accelerate reaction rates. Prolonged laboratory exposure using an improperly designed sample

holder may result in the specimen failing in regions of high stress and separating from the fixture.

2. The sample holder should be vented to avoid trapping pockets of gas behind the specimen.

When the trapped gas is heated by the plasma discharge, it can expand to produce high stress at the holder-

specimen interface.

3. The fixture should be radiatively or conductively cooled to control specimen temperature. For

the thermal energy AO systems (NASA MSFC's AODTS, sec. 6.1.1), sample temperature should be kept as

constant and as close to room temperature as possible, since reactivities of some materials increase with

elevated temperatures. For the 2.5-GHz microwave systems, the 5-eV AO has equivalent temperature of

55,000 K (98,508 °F), so sample temperature is irrelevant to reactivity calculations. However, sample

temperature should not exceed that which the material will see on orbit. The potential experimenter should

be aware that the 2.5-GHz microwave source also produces significant amounts of UV radiation that can

enhance a material's sensitivity to AO erosion.
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6.3 Computer Simulations

6.3.1 Boeing

Boeing has developed three programs--FLUXAVG, SHADOWV2, and SOLSHAD--to predict

the exposure of simple or complex surfaces to AO or UV or both. All three have demonstrated good agree-

ment with actual exposures on LDEE FLUXAVG models AO fluence at 6-min intervals to satellite sur-

faces which are neither shadowed nor exposed to AO scattering by other surfaces. SHADOWV2 models

AO fluence with interfering surfaces involved. It includes an interactive builder to develop the satellite's

geometry. The SOLSHAD program predicts solar exposure and shadowing which may shadow or reflect

on one another. It is written in FORTRAN and runs under Sun OS, UNIX. The source code is available on

tape. Data are input as a geometry description, materials properties, and ram direction through an interac-

tive data file builder. Results are output as tabular, graphical output of AO flux on shadowed surfaces. Solar

exposure was compared to independent calculation to verify the program.

Another space environment software tool, soon to be available through the Space Environments

and Effects Program, is the spacecraft materials selector expert system being developed by Boeing. This

expert system with an inference engine and knowledge bases may be used to select materials for use

in space that meet specific engineering requirements. It estimates AO fluence, UV radiation dose,

and ionizing particle fluence and dose levels. It also has some predictions of contamination effects due

to outgassing.

For information, contact:

Dr. Gary Pippin, M/S 82-32,

Boeing Defense & Space Group,

EO. Box 3999,

Seattle, WA 98124-2499

(253-773-2846; Harold. Pippin @ PSS.Boeing. corn)

6.3.2 Europe

The European Space Agency (ESA), through the ESA Technology and Engineering Center in

Noordwijk, The Netherlands, has developed two programs for simulating AO exposure. The ATOXSAPRE

program computes fluxes, fluences and resulting erosion on simply oriented surfaces (ram, Sun-pointed,

and anti-Sun pointed). An ESABASE/Atomox application has also been developed which takes into

account more complex geometries and orientations.
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7. DIAGNOSTIC EQUIPMENT

Several instruments are available to measure AO erosion rates aboard a spacecraft. Awareness of

significant changes in AO erosion rates will give mission planners the flexibility to alter attitudes to protect

vulnerable areas of a spacecraft or to change operations plans. Because of the nature of AO erosion, all of

these techniques at present are sacrificial (i.e., the sensor is unusable after its coating is eroded).

7.1 Optical Fiber Sensors

A newly developed optical fiber sensor concept offers the possibility of gauging the AO erosion of

polymers in the space environment (Li). The design compares the brightness of light transmitted by two

fibers, one exposed to and one protected from the AO flux. The fibers are polymethyl-methacrylate which

erodes faster than polymers such as polyimide (Kapton®), FEP Teflon TM, and graphite epoxy. It is also

affected by UV radiation. Thus, a properly designed system can provide an early warning of potential
failure due to AO effects.

In the sensor design, light from a light-emitting diode is split into two signals in a 50/50 optical

fiber coupler. One signal goes immediately to a reference photodiode, and one is split again and the two

components pass through a protected reference fiber and an exposed sensing fiber. The light then passes

through an optical switch and is sensed by a photodiode. This setup ensures that the only variations mea-

sured by the system are caused by changes in the exposed section of the sensing fiber, and that thermal and

cosmic radiation effects are sensed evenly. In tests in a vacuum chamber with an AO fluence, the optical

fiber sensor measured erosion rates that corresponded well with a Kapton ® witness sample. Some work

remains to quantify the system fully and to calibrate it for potential flight use.

7.2 Quartz Crystal Microbalances

The EUV Explorer carried two TQCM's coated with Teflon TM for studies of AO effects (Lorentson

et al.). One coated TQCM was placed on the Sun side of the spacecraft and the other was placed on the

shaded side. The sPacecraft=was launched June 7, 1992, into an orbit 500-kin (310-mi) high and inclined

28.5 deg, an orbit where spacecraft experience extensive AO erosion.

The TQCM's were coated with a 600-nm-thick layer of FEP Teflon_i The mass on the quartz

crystal can be measured by passing an electrical current through the crystal and measuring its response

frequency. The spacecraft was designed to roll once per orbit so that its telescopes scan the sky and avoid

the Sun. This meant that the TQCM's were pointed into and then away from the AO flow. Shadowing and

other factors also affected the exposure of the two TQCM's during the mission.

An interesting result noted was the leveling of the decay rate after an extended period. Teflon TM

erosion accelerated after 25 days when the spacecraft calibration period ended and its attitude changed.

This exposed the TQCM's to sunlight and increased the erosion rate from an estimated 1.86 × 10 -26 cm3/

atom to 55.8 × 10 -26 cm3/atom, a factor of 30. Eventually, though, the erosion rate decayed to match the
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initial rate.The investigatorsbelievethat this wasdueto the susceptiblemolecularbondshavingbeen
erodedby UV radiationandthestrongeronesstill resistingthechange.

7.3 Carbon Sensors

The AORM on EOIM-III operated by measuring the electrical conductance of carbon sensor ele-

ments. Resistance increases as the coating is eroded until no current is conducted when the coating is gone.

The design of such a sensor must consider that erosion can be uneven across a surface and allow sufficient

area and depth to provide a proper measure during a mission. AORM also had protected carbon resistors to

compensate for temperature changes which might bias the readings.

7.4 Catalytic Probes

Catalytic probes measure heat produced by the recombination of oxygen atoms striking a catalytic
silver oxide surface. 2

7.5 Portable Reflectometer

For space missions where crew access is available, AZ Technology of Huntsville, AL, has devel-

oped a laboratory-calibrated, portable reflectometer that can be used on exposed surfaces during extrave-

hicular activity. This has been demonstrated on Mir. The reflectometer includes a protected reference sur-

face and other features to ensure measurement accuracy. Changes in visible and UV reflectivity can serve

as a good measure of changes due to AO and UV exposure. The reflectometer can measure reflectivity

across a wavelength range of 250-2,500 nm and indicate changes in thermal performance.
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8. SURFACE RECESSION PROFILES

As discussed earlier, the amount of surface recession for a uniform material of known reactivity is

directly proportional to AO fluence, or the total number of atoms impinging on each square centimeter of

exposed material for the duration of the intended mission. Fluence, in turn, is dependent on such param-

eters as spacecraft altitude, attitude, orbital inclination, mission duration, and solar activity.

The AO fluence for a particular mission may be determined by using either mass spectrometer

incoherent scatter thermosphere model (MSIS-90) or Environmental Workbench 4.0, both available through

the Space Environment and Effects Program web site (http://see.msfc.nasa.gov). The MSIS 90 model

calculates the following thermosphere parameters from ground to thermospheric heights: kinetic tempera-

ture of the neutrals, the number densities of the individual species (He, O, N 2, Ar, H, N), and the total mass

density and pressure. MSIS 90 is a FORTRAN program and can be compiled to run on various platforms.

It provides a tabular data output of density, total mass density, neutral and exospheric temperatures for each

gas species (in principle, a user should be able-to output the tabular data to disk and use the file as input for

a spreadsheet or scientific graphics program). The source code is downloadable as a 110 K text file by

anonymous FTP from:

Location: nssdc.gsfc.nasa.gov

Folder: pub/models/atmospheric/msise90/
File name: msise90, txt

Environmental Workbench also has graphing capability and other environment models with

it, so estimated AO fluence to specific areas of a spacecraft may be calculated, plus UV, plasma, etc.

Environmental Workbench runs on PC, UNIX, IRIX, and Sun OS platforms. At the time of publication,

Environmental Workbench used the older MSIS-86 code. For more information contact:

Ricaurte Chock

NASA Lewis Research Center--MS 302-1

21000 Brookpark Road

Cleveland, OH 44135

Phone: 216-433-8057

E-mail: ronin@ lerc.nasa.gov

The Space Environments and Effects Program web site also has other thermosphere models avail-

able for spacecraft designer use and is updated as new models become available.
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