
Space Electronics A challenging world for designers

Christian Poivey Kenneth A. LaBel NASA-GSFC

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

Designing Electronics for Space

- ·Low power
- ·High reliability
- ·Harsh environment
 - ·Thermal
 - ·Mechanical
 - ·Electro-magnetic
 - ·Radiation

CISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

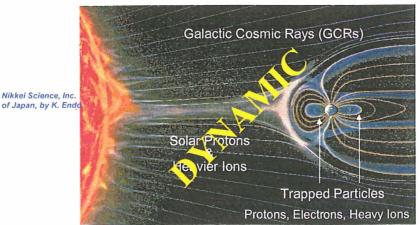
_

Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

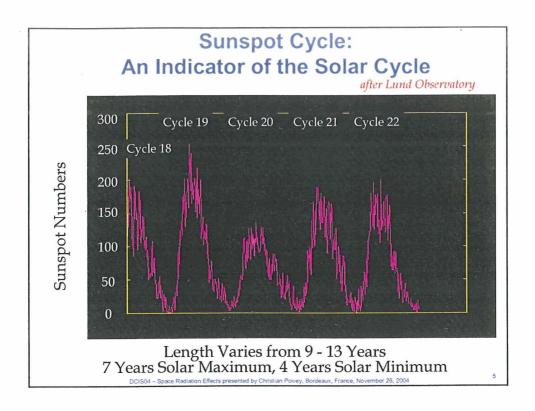
Atomic Interactions

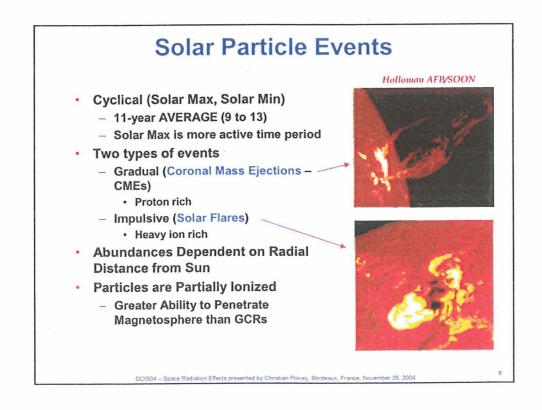
- Direct Ionization

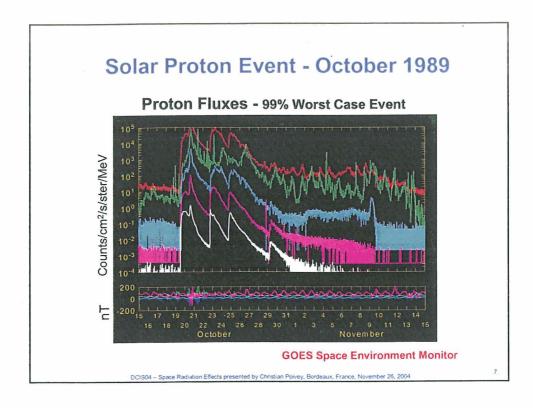

Interaction with Nucleus

- Indirect Ionization
- Nucleus is Displaced

http://www.stsci.edu/hst/nicmos/performance/anomalies/bigcr.html

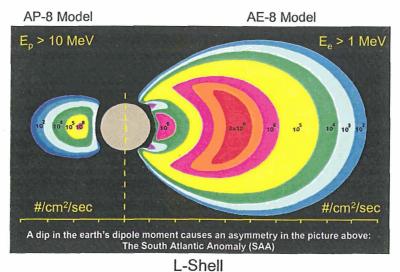

CISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 200


Space Radiation Environment



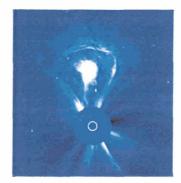
Deep-space missions may also see: neutrons from background or radioisotope thermal generators (RTGs) Atmosphere and terrestrial may see GCR and secondaries

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004



Free-Space Particles: Galactic Cosmic Rays (GCRs) or Heavy lons Definition CREME 96, Solar Minimum, 100 mils (2.54 mm) Al - A GCR ion is a charged particle (H, He, Fe, etc) Typically found in free space (galactic cosmic rays or GCRs) · Energies range from MeV to GeVs for particles of concern for SEE Origin is unknown Important attribute for impact on electronics is how much energy is deposited by this particle as it passes through a semiconductor material. This LET (MeV-cm²/mg) is known as Linear Energy Transfer or LET (dE/dX). Commercial Technology Sensitivity

Trapped Particles in the Earth's Magnetic Field: Proton & Electron Intensities


Solar Cycle Effects: Modulator and Source

Solar Maximum

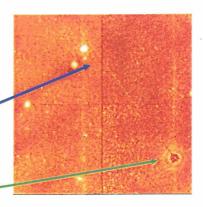
- Trapped Proton Levels Lower, **Electrons Higher**
- GCR Levels Lower
- Neutron Levels in the Atmosphere Are Lower
- Solar Events More Frequent & **Greater Intensity**
- Magnetic Storms More Frequent --> Can Increase Particle Levels in Belts

Solar Minimum

- Trapped Protons Higher, **Electrons Lower**
- GCR Levels Higher
- Neutron Levels in the Atmosphere Are Higher
- Solar Events Are Rare

Light bulb shaped CME courtesy of SOHO/LASCO C3 Instrument

Outline


- The Space Radiation Environment
- · The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

Atomic Interactions

Direct Ionization

Interaction with Nucleus

- Indirect Ionization
- Nucleus is Displaced

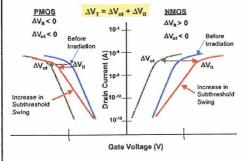
1.1

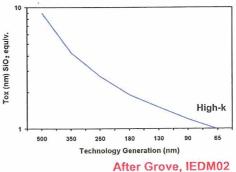
Radiation Effects and Spacecraft

- High energy particles loose energy when they cross electronic parts materials and cause radiation effects
 - Long-term effects
 - · Total ionizing dose (TID)
 - · Displacement damage
 - Transient or single particle effects (Single event effects or SEE)
 - · Soft or hard errors

An Active Pixel Sensor (APS) imager under irradiation with heavy ions at Texas A&M University Cyclotron

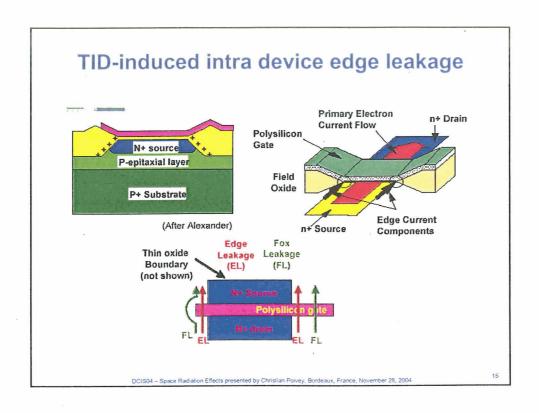
DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

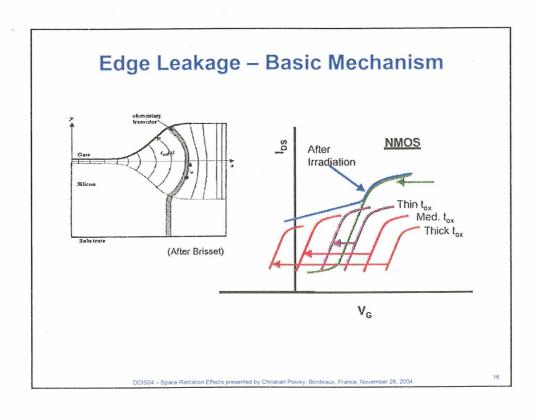

Total Ionizing Dose (TID)

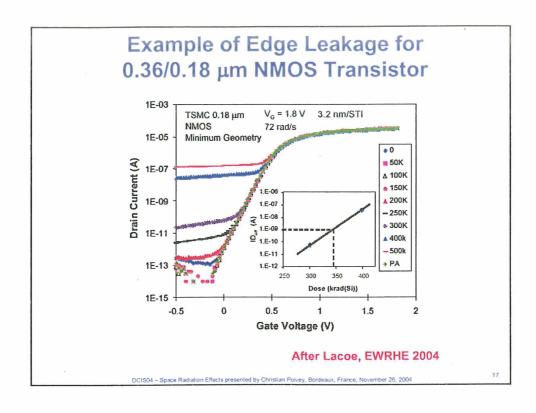

- Cumulative long term *ionizing* damage due to protons & electrons
 - Incident particles transfer energy to material through electron hole creation. Holes are trapped within devices' oxides or the interfaces oxide/silicon.
- Effects
 - Increase of Leakage Currents
 - Degradation of logical input levels and noise margin
 - Degradation of fan out
 - Degradation of propagation delays
 - Functional Failures
- Unit of radiation: dose in Gray or rad
 - 1 Gray = 100 rad = 0.01 J/Kg

DCISM - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

13

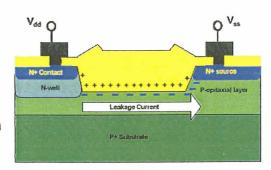





 $\Delta V_T \alpha t^2_{ox}$ (After Mc Garrity)

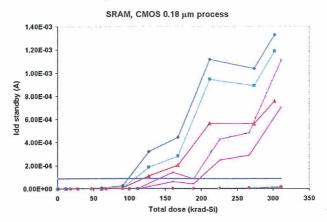
When $t_{ox} < 5$ nm, significant hole tunneling out of the gate oxide occurs, resulting in negligible number of remaining holes: $\Delta V_{ot} \sim \Delta V_{it} \sim 0$

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004



Inter device isolation-oxide leakage

- Inversion of field oxide results in leakage path between N+ contact (Vdd) in the N- well and N+ source (GND)
- Field oxide leakage paths can also span N+ source/drain regions between adjacent N- channel transistors



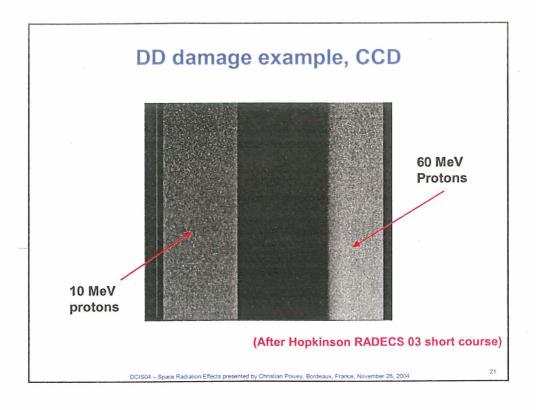
Field oxide leakage path

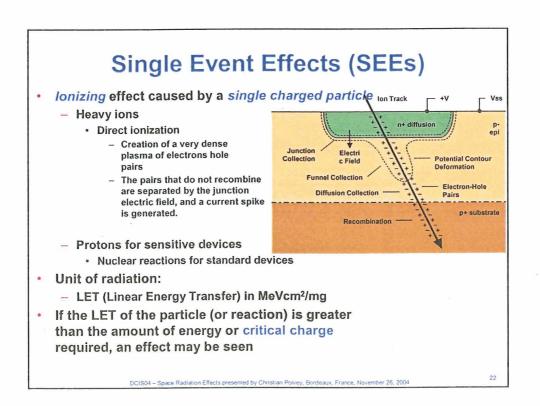
(After Alexander)

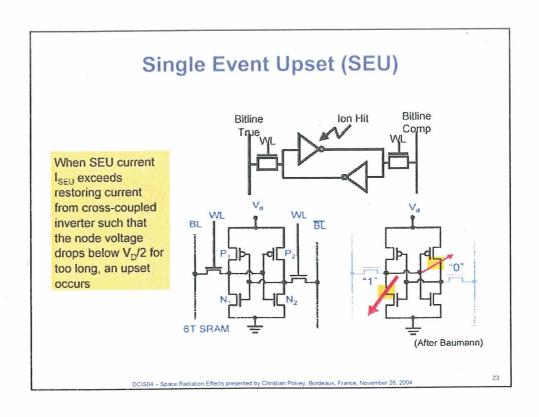
DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

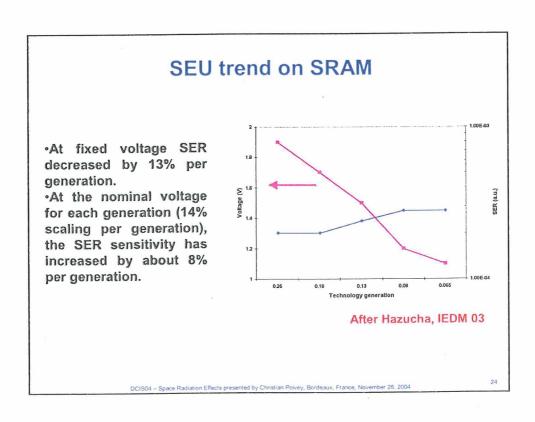
Example of TID degradation for 0.18 μm CMOS SRAM

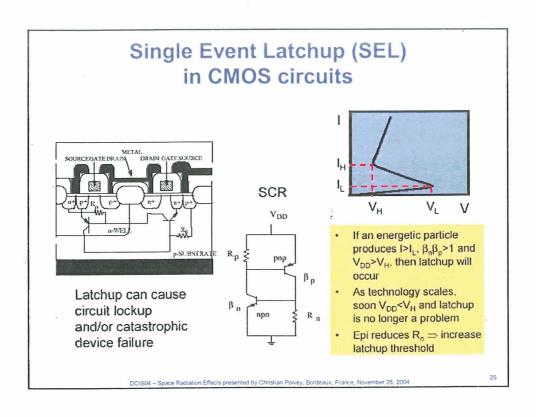
- No significant degradation up to 90 krad-Si
- Sufficient for most space applications, typical dose levels:
 - ·Geostationary Orbit, 10 years: 50 krad-Si
 - ·Low Earth Orbit, 5 years: 20 krad-Si

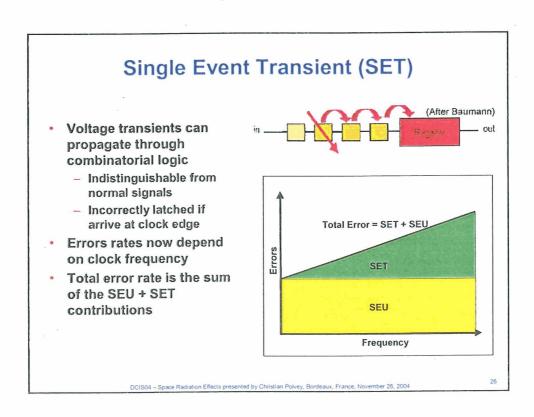

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

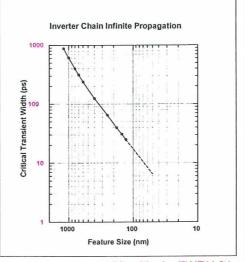

19


Displacement Damage (DD)


- Cumulative long term non-ionizing damage due to protons, electrons, and neutrons
 - Incident particles transfer energy by elastic or inelastic collisions with atoms of the devices material (Silicon).
 Structural defects are created on the crystallographic structure.
- Effects
 - Minority carrier lifetime in the semiconductor is decreased
 - · Increase leakage currents
 - · Decrease gain of bipolar transistors
 - Important for opto-electronics and linear bipolar devices, not significant for CMOS devices.
- Unit of radiation:
 - equivalent fluence for a selected electron or proton energy in particles/cm²


DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

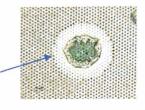




Transient propagation in CMOS

- If transient pulse width is greater than critical width, the pulse will propagate indefinitely through combinatorial logic.
- For pulses shorter than the critical transient width, the transient will be attenuated.
- Critical width decreases with feature size
 - Estimate of heavy ion transient pulse width is 100-200 ps

After Mavis, EWRH 04


DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

27

Other Single Event Effects

Multiple Event Upset (MEU)	Several bits corrupted by a single particle	Memories
Single Event Functional Interrupt (SEFI)	Loss of normal operation	Complex devices with built-in state machine/control sections
Single Event Burnout (SEB)	High current condition	BJT, N channel power MOSFETs
Single Hard Error (SHE)	Stuck bit	Memories
Single Event Gate Rupture (SEGR)	Rupture of gate dielectric	Power MOSFETS, flash PROM,
Other events	SESB, HCA,	

Destructive event in a MOSFET used in a DC-DC Converter

CISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 200-

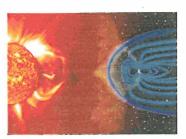
Outline

- The Space Radiation **Environment**
- The Effects on Electronics
- · The Environment in Action
- Hardening Approaches to **Commercial CMOS electronics**
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

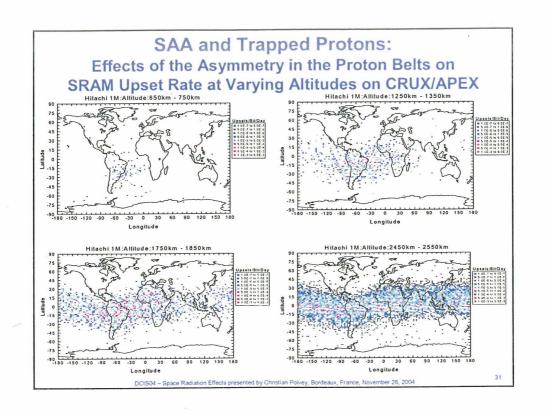
Atomic Interactions

- Direct Ionization

Interaction with Nucleus

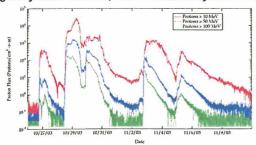

- Indirect Ionization
- Nucleus is Displaced

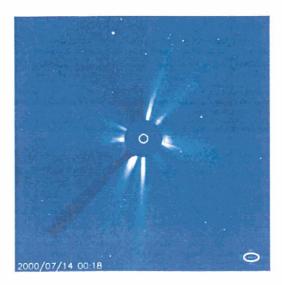
http://www.stsci.edu/hst/nicmos/performance/anomalies/bigcr.html


DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

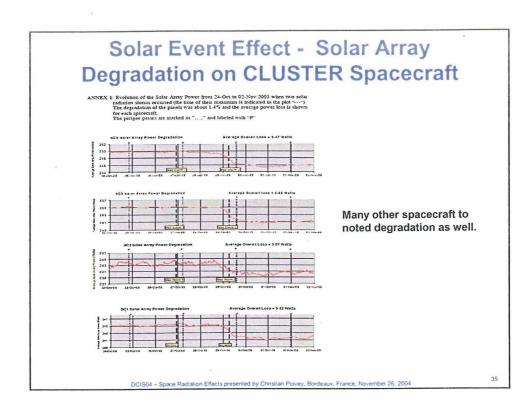
Radiation Effects on Electronics and the Space Environment

- Three portions of the natural space environment contribute to the radiation hazard
 - Solar particles
 - · Protons and heavier ions - SEE, TID, DD
 - Free-space particles
 - · GCR
 - For earth-orbiting craft, the earth's magnetic field provides some protection for GCR
 - SEE
 - Trapped particles (in the belts)
 - · Protons and electrons including the South Atlantic Anomaly (SAA)
 - SEE (Protons)
 - DD, TID (Protons, Electrons)


The sun acts as a modulator and source in the space environment


Recent Solar Events – A Few Notes and Implications

- In Oct-Nov of this year, a series of X-class (X-45!) solar events took place
 - High particle fluxes were noted
 - Many spacecraft performed safing maneuvers
 - Many systems experienced higher than normal (but correctable) data error rates
 - Several spacecraft had anomalies causing spacecraft safing
 - Increased noise seen in many instruments
 - Drag and heating issues noted
 - Instrument FAILURES occurred
 - Two known spacecraft FAILURES occurred
- · Power grid systems affected, communication systems affected...



DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

SOHO LASCO C2 of the Solar Event

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

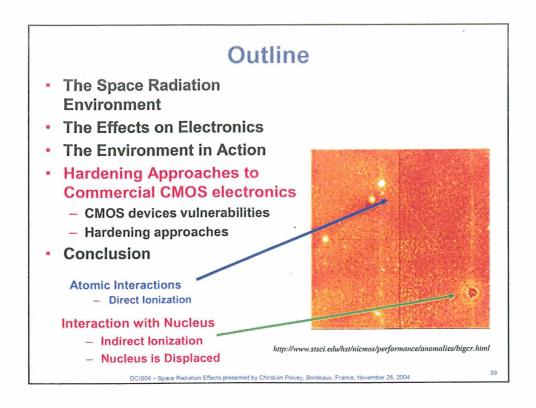
Science Spacecraft Anomalies During Recent Solar Events

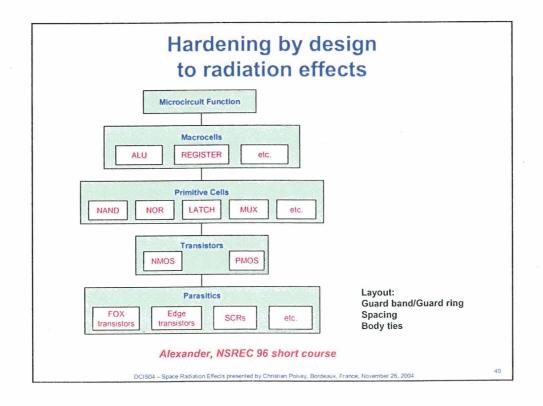
Type of Event	Spacecraft/ Instrument	Notes
Spontaneous Processor Resets	RHESSI	3 events; all recoverable
5	CLUSTER	Seen on some of 4 spacecraft; recoverable
	ChipSAT	S/C tumbled and required ground command to correct
High Bit Error Rates	GOES 9,10	
Magnetic Torquers Disabled	GOES 9, 10, 12	
Star Tracker Errors	MER	Excessive event counts
1	MAP	Star Tracker Reset occurred
Read Errors	Stardust	Entered safe mode; recovered
Failure?	Midori-2	
Memory Errors	GENESIS	19 errors on 10/29
	Many	Increase in correctable error rates on solid- state recorders noted in many spacecraft

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

Science Instrument Anomalies During Recent Solar Events

Type of Event	Spacecraft/ Instrument	Notes
Instrument Failure	GOES-8 XRS	Under investigation as to cause
	Mars Odyssey/Marie	Under investigation as to cause; power consumption increase noted; S/C also had a safehold event – memory errors
	NOAA-17/AMSU-A1	Lost scanner; under investigation
Excessive Count Rates	ACE, WIND	Plasma observations lost
	GALEX UV Detectors	Excess charge – turned off high voltages; Also Upset noted in instrument
	ACE	Solar Proton Detector saturated
Upset	Integral	Entered Safe mode
	POLAR/TIDE	Instrument reset spontaneously
Hot Pixels	SIRTF/IRAC	Increase in hot pixels on IR arrays; Proton heating also noted
Safe Mode	Many	Many instruments were placed in Safe mode prior to or during the solar events for protection

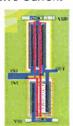

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004


3

Selected Other Consequences

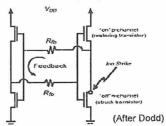
- · Orbits affected on several spacecraft
- Power system failure
 - Malmo, Sweden
- High Current in power transmission lines
 - Wisconsin and New York
- Communication noise increase
- FAA issued a radiation dose alert for planes flying over 25,000 ft

CIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004



SEU hardening at primitive cell level

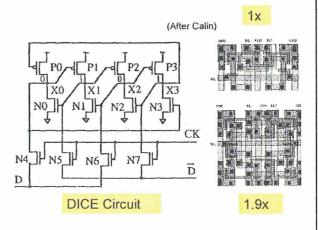
Increased Drive Current



(After Baze)

- •Increase Drive current I_D (\uparrow W) increasing restoring current
- ·No speed penalty
- ·Area penalty α ID

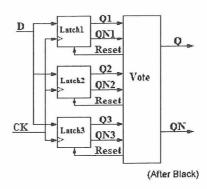
Resistive Coupling


- Decrease response tine by increasing RC with feedback resistors
 - •Resistors are not an option at many commercial foundries
- Speed penalty
- ·Small area penalty

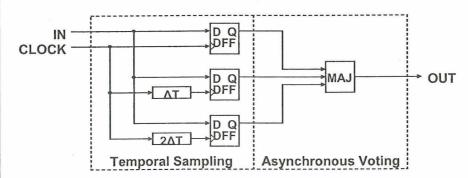
OCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

41

SEU hardening at macrocell level

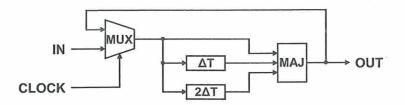

- Design enhancements: deal with SEU occurring in primitive cells
 - Hardened data latches: DICE, HIT,...
- Uses a 4-node redundant structure
 - •Stores data as 1010 or 0101
- •Relies on dual node feedback control
 - Two nodes must be struck simultaneously to generate an upset
- •Decrease in effective sensitive area

CISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004


SEU hardening at macrocell level

- Design enhancements: deal with SEU occurring in primitive cells
 - redundancies
- •Triple Module Redundancy (TMR)
 Triple logic + vote
- •Reduce effective sensitivity
 - •2 latches must be struck simultaneously to get an error
- •Does not increase tolerance of
- individual latches
- ∘~ 3x-4x power/area

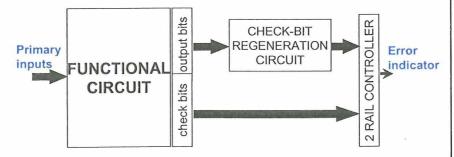
43


SEU/SET hardening at macrocell level

- By delaying clocks, transient can only be captured at 1 latch
 Voted out
- · Can delay data instead of clocks
- ·Sensitive to transients on clock line
- •Area penalty ~ 3x 4x
- •Speed penalty: $1/f_{eff} = 1/f_0 + 2 \Delta T$
- ·Many variations on this concept

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

SEU/SET hardening at macrocell level


- Achieves equivalent of triple spatial redundancy by using same circuitry at three different times
- $\, \bullet \,$ With appropriate ΔT , can be immune to upset from multiple node strikes
- Immune to transients on: data, clock, asynchronous control, and synchronous lines

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

4

Hardening at the function level

- Design enhancement to deal with errors occurring in macrocells
 - · Redundancies and voting or lockstep
 - · EDAC/Self checking

Watchdog timer

OCISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

EDAC example: Hamming code

- Parity evaluation of different bit combinations allows for m bit correct, n bit detection
- •Can be used to correct/detect memory output
- ·Can be used to scrub memories
 - Time between scrubs determines max error latency

Data Bits	Check Bits	Total bits
1	3	4
2 to 4	4	6 to 8
5 to 11	5	10 to 16
12 to 26	6	18 to 32
27 to 32	7	34 to 39

Single Bit-Error Correct, Double Bit-Error Detect

CISO4 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

4

Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

Atomic Interactions

- Direct Ionization

Interaction with Nucleus

- Indirect Ionization
- Nucleus is Displaced

http://www.stsci.edu/hst/nicmos/performance/anomalies/bigcr.html

DCIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004

Conclusion

- The radiation environment makes the design of electronics for space very challenging
- High total dose hardness levels can be achieved with state of the art technologies
- A variety of design techniques exist for mitigating SEE
 - Area, power, speed penalties depend on chosen mitigation approach
- New effects occur for each new technology generation

ICIS04 - Space Radiation Effects presented by Christian Poivey, Bordeaux, France, November 26, 2004