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The SmallSat Market
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Low Cost Mission Benefits to NASA
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Access to space severely limits strategic missions and technology innovation in flight systems.

Strategic (i.e. High Cost) Missions: The cost of access to space limits the mission portfolio significantly

- Cadence between missions is very long

- NASA learns from one mission, increases desire for another

- NASA considering constellations in geocentric space

- NASA considering diverse asteroid reconnaissance missions

Low Cost Missions:

- Wide breadth of investments in new technology

- Investments in SmallSat subsystems

- $1M investment may lead to 10 subsystems ready for flight validation

- Subsystems are ~1kg each

What if the program can only get one launch per year?  Or only afford 1 launch entirely?

- Frequent low cost launches allow for iteration

- Doesn’t need to be perfect the first time, reduced cost development

- Opportunities to iterate and improve technologies

All estimates are hypothetical only for discussion purposes.



The Value Proposition
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The value of a launch causes large increase in payload costs.

Diverse targets exacerbates the issue.

For Discovery Class Mission: $25M for science, $250M for launch  $475M for S/C and operations

Science value: Only 1 / 25 dollars spent on science.

Can only afford one launch per 3-4 years, it has to work.

High leverage of in-space propulsion

How do you scout 20 asteroids? $15B?  

Need lower cost spacecraft and launch

NASA is making significant investments for in-space propulsion for SmallSats

- Launch with loose requirements and transfer to desired orbit

Case Study:  Science instrument/payload Class A Class D

Success Probability 99.5% 80% x4 = 99.8%

Cost $8M $800k $3.2M

What if launch = $10M? $18M, it will work $10.8M, 1/5 fail

x2 = $21.6M, 1/25 fail

All estimates are hypothetical only for discussion purposes.



Small spacecraft with advanced in-space propulsion may offer a potential solution 

for high value missions to a diverse target set.

Propulsive SmallSat Solutions
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 20-200W Propulsion Options Available in the near-term (e.g. Iodine Hall, MEP, solar sails)

- 3U, 6U and 12U Spacecraft starting with escape orbits

- Limited payload capability

 200-600W ESPA Class Options (e.g. Iodine Hall, Long Life Hall)

- Can provide ~10km/s ∆V

- Enables GTO to Asteroids, Comets, Moon and Mars

 600W ESPA Grande “Discovery Class” (~300kg) Options (e.g. Iodine Hall, Long Life Hall)

- Volume limitations require high density propellant

- New class of HEOMD and SMD missions

- 3x – 5x reduction in total mission cost

 600W – 1500W Class Orbit Maneuvering Systems

- Enables high ∆V using volume within the ESPA Ring

- Delivery diverse payloads to various orbits



Technical Attributes
• Thrust range:  10mN – 100N
• 1U Prop Module deltaV ~ 50fps (15 m/s)
• 2U Prop Module deltaV ~ 78fps (24 m/s)

State of Technology
• TRL 9
• Missions flown:  many, e.g. SAFER, 

XSS10,
• Potential Providers: Large number; e.g. 

Moog, Valvetech, Surrey
• Current or past known investments: 

Previous NASA investments, no ongoing 
NASA CubeSat investments

Pros / Cons

• Pros:  Inert, non-toxic, relatively cheap, 
simple, reliable

• Cons:  low impulse density

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2

Propellant Isp Relative 
Impulse 
Density

Storage Pressure

Nitrogen ~70 s 1.0 ~300 psia

State of the Art: Cold Gas – GN2

6



State of the Art: Cold Gas

Graphic(s)

Technical Attributes
• Thrust range:  10mN – 1N
• 1U Prop Module deltaV ~ 88fps (27 m/s)
• 2U Prop Module deltaV ~ 136fps (42 m/s)

State of Technology
• TRL 7
• Missions flown: None yet
• Manufacturers:  Vacco, Surrey
• Current or past known investments: 

Previous NASA investments, no ongoing 
NASA CubeSat investments

Pros / Cons

• Pros:  generally Inert, non-toxic, relatively 
cheap, simple, reliable

• Cons:  low impulse density; requires heat, 
“long” burns may be limited, some 
propellant options are flammable

Propellant Isp Relative 
Impulse 
Density

Storage Pressure

Multiple ~70 s 1.77 Up to 900 psia

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2
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State of the Art: Pulsed Plasma Thrusters

Technical Attributes 
• Thrust class: <1.3 mN
• Power requirements:1.5-100W

State of Technology
• Technology Readiness: Number of well proven 

flight systems exist.  Advanced technology metal 
based have been explored are low TRL

• Compact solid state system that uses solid 
Teflon® as the propellant.  

• Potential Providers: Aerojet-Rocketdyne, Busek, 
George Washington University

• Current or past known investments: NASA, 
Commercial development

Pros/Cons

• Pro: Technology has flown
• Pro: Robust, simple modular design
• Pro: Low power requirement
• Pro: Volumetrically efficient
• Pro: Enables precision control

• Con: Limited total life operation
• Con: Very low thrust
• Con:  Pulsed operation may impact spacecraft 

/science

GWU mCAT with PPUAerojet PRS-101

JPL/Almeda Vacuum Arc Thruster

Propellant Isp Specific
Power 

(W/mN)

Storage Pressure

Teflon® and Metals ~500-3000-sec ~70-400 N/A - Solid

Busek micro PPT



Near-term: Green Liquid Propulsion
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Thrust range: 
• Typical CubeSat concepts show thrusters/multiple thruster systems 

ranging from 0.1 N to 5 N, other theory/demonstration ranging from 
<1 mN to levels  >45 N

State of Technology
• TRL:

• Many propellants flown or soon to fly in non-CubeSat applications
• Multiple thrusters of this scale demonstrated to TRL 6 or flown
• Only one known CubeSat system at TRL 6, likely 3 or more within a 

year
• Systems are at laboratory testing stages
• Potential Manufacturers: Busek, Tethers Unlimited, Aerojet Rocketdyne, 

Vacco, Micro Aerospace Systems, Firestar, ECAPS, some NASA in-house, 
academia

• Current or past known investments: Currently two ongoing CubeSat 
propulsion awards (Aerojet – Hydrazine, Busek – AF-M315E Ionic 
Liquid), some past SBIR contracts for components (valves, thrusters), 
NASA

Pros/Cons
• Pro: Certain propellants (ionic liquids) may not cold start; have been shown to 

require less safety inhibits minimizing system mass
• Pro: High thrust levels enable rapid response maneuvers 
• Pro: Monopropellant systems have minimal complexity, may require minimal 

control logic/hardware

• Con: Most systems require increased power (compared to cold gas) for 
ignition/catalyst preheat

• Con: Stored chemical energy may be an issue with most designs (save 
electrolysis); require exemption  

• Con: High temperature chemical systems may require additional hardware and 
mass for thermal regulation of the subsystem and/or whole CubeSat

• Con: Pressurized vessels traditionally required for chemical systems
• Alternate pressurization mechanisms (like electrolysis of water or 

chemical for pressurization, solid gas generator, mechanical means, etc.) 
have been studied

Propellant Isp RelativeImpulse
Density

Storage Pressure

Low temperature decomposition 
(e.g.: hydrogen peroxide, tridyne, 

nitrous oxide)

130 to 200 s Gasses: ~1.8
Liquids: ~5 to 9

Gasses: up to 5000 psi
Liquids: 100 to 400 psia

Hydrazine 150 to < 250 
s

~8 100 to 400 psia

Nitrous Oxide Fuel Blends < 300 s ~8.8 100 to 400 psia

Water (electrolyzed to bipropellant) 300 to 350 s ~14 Inert as launched

Ionic Liquids (e.g.: AF-M315E, LMP-
103S)

220 s to 250 
s

~12 to 15 100 to 400 psia

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2



Near-term: Water Electrolyzed
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Thrust range: 
• Typical CubeSat concepts show thrusters/multiple thruster systems 

ranging from 0.1 N to 5 N, other theory/demonstration ranging 
from <1 mN to levels  >45 N

• Architecture: Propellants are stored as water, then electrolyzed and 
stored as gaseous O2 and H2 for combustion.

State of Technology
• TRL:

• CubeSat system at/approaching TRL 6
• Loaded propellant is water; qualification not required

• Systems are at laboratory testing stages
• Potential Manufacturers: Tethers Unlimited, Cornell 

University
• Current or past known investments: Previous NASA SBIR

Pros/Cons

• Pro: Propellant stored as water during launch; safe
• Pro: Inexpensive propellants
• Pro: High thrust levels enable rapid response maneuvers
• Pro: Gaseous O2/H2 make for easily combusted propellants

• Con: Time to produce propellant may limit capability / 
responsiveness 

• Con: Complexity of the system may mean increased dry mass 
• Con: Command control needed to regulate system adds some 

complexity to system integration & operation
• Con: Requires increased power (compared to cold gas) for 

electrolysis and ignition
• Con: High temperature chemical systems may require additional 

hardware and mass for thermal regulation of the subsystem 
and/or whole CubeSat

Propellant Isp Impulse 
Density

Storage Pressure

Water (electrolyzed to 
bipropellant)

300 to 
350 s

~14 Inert as launched Tether Unlimited - Hydros Cornell University Concept

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2



Near-term: Hydrazine
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Thrust range: 
• Typical CubeSat concepts show thrusters/multiple thruster 

systems ranging from 0.5 N to 4 N 
• Other theory/demonstration ranging from 0.02 to 10000 N

State of Technology
• TRL:

• Hydrazine has significant flight heritage, including 
thrusters of this class

• One development effort currently underway to bring 
system to TRL 6

• Currently at system level laboratory testing stages
• Potential Manufacturers: Aerojet-Rocketdyne
• Current or past known investments: Currently one 

ongoing CubeSat propulsion awards with Aerojet-
Rocketdyne of Redmond, WA

Pros/Cons
• Pro: High thrust levels enable rapid response maneuvers 
• Pro: Monopropellant systems have minimal complexity, may require 

minimal control logic/hardware
• Pro: Hydrazine can cold start at the cost of catalyst life if power is lacking

• Con: If hydrazine leaks through its valve, will cold start, requiring 
additional hardware for safety measures

• Con: May require thermal regulation for safety
• Con: Requires increased power (compared to cold gas) for catalyst 

preheat
• Con: Stored chemical energy may be an issue; require exemption  
• Con: Pressurized vessels traditionally required for chemical systems
• Con: High temperature chemical systems may require additional 

hardware and mass for thermal regulation of the subsystem and/or 
whole CubeSat

Propellant Isp Impulse 
Density

Storage Pressure

Hydrazine 150 to < 
250 s

~8 100 to 400 psia

Aerojet-Rocketdyne modular propulsion system (MPS)

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2



Near-term: Micro Electrospray Propulsion
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Thrust range: 
• 10-100µN, scalable by adding thrusters

State of Technology
• TRL:

• Several concepts at low TRL
• Three concepts maturing to TRL 5 under NASA STMD

• Currently at integrated propulsion system level testing
• Ongoing NASA STMD Awards with JPL, Busek and MIT

Pros/Cons
• Pro: Relatively high system level efficiency
• Pro: High efficiency at CubeSat power levels
• Pro: Efficient system packaging
• Pro: High specific impulse density (∆V / volume)

• Con: Lifetime challenges for interplanetary mission applications
• Con: System scalability challenges

Propellant Isp Impulse 
Density

Storage Pressure

Ionic liquids, Indium 500 to < 
5000 s

1000 - 6500 Unpressurized –
Passive Feed System

* Relative Impulse density (Rho*Isp) / (Rho*Isp)GN2

JPL Indium MEP Thruster

MIT S-iEPS Thruster Pair

Busek HARPS Thruster



Near-term: Iodine Hall Propulsion
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Thrust range: 
• Near-term: 10 – 50mN
• Mid-term: <150mN (<1N achievable with thruster if funded)

State of Technology
• TRL:

• Several thrusters at TRL 5
• 200W and 600W systems funded to TRL 6 by 2016
• 200W System approved for flight demonstration in 2017

Pros/Cons
• Pro: High specific impulse density (∆V / volume)
• Pro: Stored unpressurized
• Pro: Maximum operating pressures ~2psi
• Pro: Small modifications to flight heritage systems

• Con: Lifetime challenges for ESPA class spacecraft with 200W thruster
• Con: Low propellant tank maturity for ESPA class spacecraft

Propellant Isp Impulse 
Density

Storage Pressure

Iodine 1000 to < 
1750 s

5000 Unpressurized

Iodine

Xenon



Iodine Propulsion - iSAT
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High Value mission for SmallSats and for future 

higher-class missions leveraging iodine propulsion.

The iSAT Project is the maturation of iodine Hall technology to enable high ∆V primary propulsion for 

NanoSats (1-10kg), MicroSats (10-100kg) and MiniSats (100-500kg) with the culmination of a 

technology flight demonstration.

- NASA Glenn is the propulsion system lead

- NASA MSFC is leading the flight system development and operations

The iSAT Project launches a small spacecraft into low-Earth orbit to:

- Validate system performance in space

- Demonstrate high ∆V primary propulsion for SmallSats

- Reduce risk for future higher class iodine missions

- Demonstrate new power system technology for SmallSats

- Demonstrate new class of thermal control for SmallSats

- Gain knowledge on iodine environment impact to payloads

- Increase expectation of follow-on SMD and AF missions

- Demonstrate SmallSat Deorbit

- Validate iodine spacecraft interactions / efficacy

- Planned for launch in early 2017
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Solar Sail Propulsion for Smallsats

Technical Attributes
• 1U Prop Module (35 m2 sail)

• DV ~ 1.3 km/s/yr
• Thrust ~ 0.25 milli-Newtons

• 2U Prop Module (85 m2 sail)
• DV ~ 1.6 km/s/yr
• Thrust ~ 0.60 milli-Newtons

State of Technology
• TRL-6 (85 m2) / TRL-7 (10 – 35 m2)
• Missions flown:  NanoSail-D (2010)
• Manufacturers: 1) NASA MSFC  2) Stellar 

Exploration
• Current or past known investments: NASA AES 

(NEA Scout & Lunar Flashlight) / Commercial 
(LightSail-A and -B)

Pros / Cons

• Pros:  very high total DV, lightweight, 
small stowed volume

• Cons:  currently restricted to inner 
solar system, complex ADCS

Sail Type Size Characteristic
Acceleration

Materials

3-axis stabilized 85 m2 0.0565 mm/sec2 Stainless Steel Boom
Aluminized CP1 fabric

Near-term: Solar Sail Propulsion
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Solar Sail Propulsion – NEA Scout

The Near Earth Asteroid Scout Will
– Image/characterize a NEA during a slow 

flyby in order to address key Strategic 
Knowledge Gaps (SKGs) for HEO

– Demonstrate a low cost asteroid 
reconnaissance capability 
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Key Spacecraft & Mission Parameters

• 6U cubesat (20 cm X 10 cm X 30 cm)

• ~85 m2 solar sail propulsion system

• Manifested for launch on the Space Launch System 
(EM-1/2017)

• Up to 2.5 year mission duration

• 1 AU maximum distance from Earth

Solar Sail Propulsion System Characteristics

• ~ 7.3 m Trac booms

• 2.5m aluminized CP-1 substrate

• > 90% reflectivity



Mid-Term: Ambipolar Thruster
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Technical Attributes 
• Thrust class: 2-25 mN
• Power requirements: 3-300W
• No direct performance measurements yet

State of Technology
• Technology Readiness: TRL 2 – university 

laboratory testing to date
• Multiple propellant options: Xenon, Krypton, 

Iodine
• Potential Provider: Aether Industries
• Current or past known investments: NASA 

contracts, DARPA

Pro/Con
• Pro: Potential for high DV in small package
• Pro: Simple / scalable manufacturing 
• Pro: Volumetrically efficient

• Con: Limited total life operation
• Con: Performance levels have not been verified
• Con: Low efficiency

CubeSat Ambipolar Thruster (CAT) – Aether Industries / University of Michigan

Propellant Isp Specific
Power 

(W/mN)

Storage Pressure

Multiple ~1200-sec Unknown Unknown



Mid-Term: Long Life Hall and Mini-Ion
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Technical Attributes
• Thrust range: 0.1-10 mN
• System power 25-200W
• System efficiency  5%-35%

State of Technology
• TRL~4: Breadboard demonstrations - Available 

in 2-5 years
• Miniature in laboratory only, flight thrusters 

>200W
• Research by Busek, UCLA, JPL, GRC, AFRL 
• Current or past known investments: SmallSat

technology award: Busek Iodine Ion Thruster, 
SBIR

Pro/Con

• Pro: Potential DV > 1000 m/s
• Pro: Iodine a high density propellant
• Pro: Demonstrated efficiency
• Best propulsion systems for 50kg-200kg S/C

• Con: Power & size very high for CubeSats

• Con: Small (e.g. 1cm) thruster efficiency very 

poor (~5%)

• Con: Iodine system low TRL & S/C interactions

• Con: Scaling to cubesat size hurts efficiency

• Con: Life requirements very demanding

Busek BRFIT-3
3 cm RF Ion Thruster

UCLA MaSMi
Hall thruster 

Propellant Isp Specific
Power 

(W/mN)

Storage Pressure

Xenon and Iodine ~500-5000-sec 50-300 Xe: 1000 psia
I: Solid 



Summary
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 Small Low-cost / High Value missions are the only viable path to a high cadence or diverse reconnaissance 

campaign for asteroids and comets

 One of the critical gaps for low cost reconnaissance is SmallSat propulsion system limitations

 Maturity

 Specific Impulse Density

 Moderate Lifetimes

 There are a large number of Small Satellite propulsion concepts receiving investment

 NASA’s Small Spacecraft Technology Program is completing a Propulsion State of the Art Assessment

- Should be publicly available early 2015

 Existing systems are very limited in capability

 Existing propulsive RCS options are far more limited with insufficient total impulse capability

 Near-term options are available for primary propulsion

 Solar Sails

 Iodine Hall

 MEP

 Mid-term options with additional potential

 Monopropellant Liquids

 Small Ion

 Long Life Low Power Hall
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