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The optimal designs and statistical inference of accelerated life tests under type-I are studied for
constant stress-accelerated life tests (CSALTs). It is assumed that the lifetime at design stress has
generalized logistic distribution. The scale parameter of the lifetime distribution at constant stress
levels is assumed to be an inverse power law function of the stress level. The maximum likelihood
(ML) estimators of the model parameters, Fisher information matrix, the asymptomatic variance-
covariance matrix, the confidence bounds, the predictive value of the scale parameter, and the
reliability function under the usual conditions are obtained under type-I censoring. Moreover, the
optimal design of the accelerated life tests is studied according to the D-optimality criterion to
specify the optimal censoring time. Finally, the numerical studies are introduced to illustrate the
proposed procedures.

1. Introduction

Accelerated life testing (ALT) is becoming important and widely used in many fields (such as
in manufacturing industries to assess or demonstrate component and subsystem reliability)
because of rapidly changing technologies, higher customer expectations for better reliability,
and the need for rapid device development. Briefly, ALT is a method for estimating the
reliability of devices at normal use conditions from failure data obtained at severe conditions.
The failure data is analyzed in terms of a suitable physical statistical model to obtain desired
information about a device or its performance under normal use conditions.

Commonly, all available test data obtained from ALT is used in statistical analysis.
However, the obtained data may be incomplete or it may include uncertainty about the failure
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time. There are three types of possible censoring schemes, right censoring, left censoring,
and interval censoring. Moreover, the most common schemes are time-censoring and failure-
censoring. Time-censored data is also known as type-I censored. It occurs when the life test is
terminated at a specified time, before all units have failed. Data is failure censored (or type-II
censored) if the test is terminated after a specified number of failures.

ALT can take the form of usage rate acceleration (for devices that do not operate con-
tinuously under normal conditions such as home appliances) or overstress acceleration (for
devices with very high or continuous usage such as communication satellites, computers, and
monitors). In real life, different types of stress loading may be considered when performing
an accelerated test. The common types are constant stress, step stress, and progressive stress.

The most common stress loading is constant stress. In constant stress-accelerated life
test (CSALT), the stress is kept at a constant level of stress throughout the life of the test;
that is, each unit is run at a constant high stress level until the occurrence of failure or
the observation is censored. Practically, most devices such as lamps, semiconductors, and
microelectronics are run at a constant stress. Many authors have studied statistical inference
of CSALT; for example, see Lawless [1], McCool [2], Bai and Chung [3], Bugaighis [4],
Watkins [5], Abdel-Ghaly et al. [6], and El-Dessouky [7].

Before launching a new product, the manufacturer is always faced with decisions re-
garding the optimum method to estimate the reliability of the product or the service. More-
over, a test plan needs to be developed to obtain appropriate and sufficient information in
order to accurately estimate the reliability performance at operating conditions, significantly
reduce test times and costs, and achieve other objectives. The appropriate criteria for choosing
a test plan depend on the purpose of the experiment (Meeker et al. [8]).

Optimum CSALT plans were studied for different lifetime distributions based on
different censoring scheme; for example, Nelson and Kielpinski [9] studied optimum ALT
plans for normal and lognormal life distributions. Nelson [10] reviewed statistically optimal
and compromise plans for the single stress ALT planning problem. Yang [11] proposed an
optimal design of 4-level constant-stress ALT plans considering different censoring times.
Ding et al. [12] dealt with Weibull distribution.

The term Generalized Logistic (GL) distribution is used as the name for several
different families of probability distributions (see Johnson et al. [13]). The main feature of
the GL distribution is that new parameters were introduced to control both location and
scale. It allows for a greater degree of flexibility and it is expected to be useful in many
more practical situations (Nadarajah and Kotz [14]), for example, in extreme value event
evaluation, in hydrological risk analysis, and in a quanta response data, and to model the
data with a unimodal density (for more details, see Mathai and Provost [15], Tolikas [16],
Alkasasbeh and Raqab [17], Tolikas and Gettinby [18], Shabri et al. [19], and Tolikas [20]).

Alkasasbeh and Ragab [17] and Shin et al. [21] were interested in estimating the
parameters of the GL distribution by ML and other methods while Rai et al. [22] employed
the genetic algorithm to derive the unit hydrograph by using nine distributions including GL
distribution. Kim et al. [23] derived the probability plot correlation coefficient test statistic
for the GL distribution. Shabri et al. [19] introduced the method of trimmed L-moments as
an alternative way in estimating the flood for higher return period and derived the trimmed
L-moments for the GL distribution. However, no studies have been made on estimating or
planning (optimal design) CSALT using the GL distribution.

This paper is organized as follows. In Section 2, the underlying distribution and the
test method are described. Section 3 introduces the ML estimators of the model parameters
with their properties under type-I censoring. Optimum censoring time test plan is developed
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in Section 4. Finally, the simulation studies needed for illustrating the theoretical results are
presented in Section 5.

2. The Model
2.1. The Generalized Logistic Distribution

The probability density function (pdf) of a three-parameter-generalized logistic distribution
(Molenberghs and Verbeke [24]) is given by

—(6+1)
f(x) = aye™ <1 + ée”‘x> , —wo<x<o, ay,0>0. (2.1)

The reliability function takes the form
-0
R(x) = <1 + 56‘”) , —o<x<oo, ay0>0, (2.2)
and the corresponding failure rate is given by
-1
h(x) = aye™ <1 + 56“") , —wo<x<oo, a,y,0>0. (2.3)

2.2, Assumptions
We assume the following assumptions for the CSALT procedure.

(i) A total of N units are divided into n1, ny,..., ng units where Z;‘:ln]- =N.

(ii) There are k levels of high stress V;j, j = 1,...,k in the experiment, and V,, is the
stress under usual conditions, where V,, < V; < --- < V.

(iii) Each nj, j = 1,..., k unit in the experiment is run at a prespecified constant stress

Vi, j=1,...k

(iv) It is assumed that the stress affected only on the scale parameter of the underlying
distribution.

(v) The failure times x;;, i = 1,...,n; and j = 1,...,k, at stress levels V;, j =

1,..., k, are the 3-parameter-generalized logistic distribution with probability
density function:

f(xij, a5,7,0) = ajye™™ <1 + Iea]'xij>_(9+l)/
’ 2.4)

—00 < Xjj < 00, lX]',Y,9>O, i=1,...,7’lj, j=1,...,k.
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(vi) The scale parameter a;, j = 1,...,k, of the underlying lifetime distribution (2.4) is
assumed to have an inverse power law function on stress levels, that is,

*

= CS;’, C,P>0, where S; = V—,
Vi
x (2.5)

b; n;
ve=T1v", b=—"—,
L j ] ko
j=1 Z;‘:lnl

where C is the constant of proportionality, and P is the power of the applied stress.

3. Maximum Likelihood (ML) Estimation

In addition to the common assumptions in Section 2.2, we assume that the experiment is
terminated at a prespecified censoring time T;. Thus, the corresponding likelihood function
will be as in the following form:

ko ~(0+1)7% il
L=H]‘[[cs}’yecsfxif <1+gecsfxv> ] |:<1+gecs]’.’n> ] . B

j=1i=1

where 617 is an indicator variable, such that

1 if x;< T,
5 = {0 . ij ‘ (3.2)
o xj > T].

The log-likelihood function is

k N k N k nj k N
InL=1In czj}sﬁ + pzi@j InS; +1In yziaﬁ + c226i]-s§?xij

j=1i=1 j=1i=1 j=1i=1 j=1i=1
(33)
(9+1)ZZ§,] ln<1+ Y ecsy ) 922(1 611)1r1<1+ L oCs] T>
j=1i=1 j=1i=1

3.1. ML Estimation of the Parameters

The first derivatives of the log-likelihood function (3.3) with respect to the unknown pa-
rameters C, P, y, and 6 are

InL £y L
an _clzZaﬁZZaqux,, O+1)> 36,8 -0> > (1-6,)7,

j=1i=1 j=1i=1 j=1i=1 j=1i=1
k

InL k nj k nj k nj
aalll) — ZZ(SI-]- In S]‘ +C <ZZ6,']‘0'1']' -0+ 1)2251']' In Sjéi]‘ - 922(1 - 6ij) In Sij),

j=1i=1 j=1i=1 j=1i=1 j=1i=1
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6g;L 1{2251,_(9+1)ZZ61;%; DHAE 517)/‘7}

j=1i=1 j=li=1 j=1li=1

alnL Zk:Z@J(eJrlv ”w) ZZ(l 6i) (1 = Aj),

j=1i=1 j=li=1
(3.4)

-1 -1
where ¢&;; = sl.)xi]-vi]-, vij = (1+ (6/y)e_csfx"f) ,Zj = SfT]-‘uj, i =1+ (6/y)e_c Sprf) , Tij =

j
—In(1-v;j), Aj = -In(1 - y;), and o;; = Sfxij InS;.

Since the first derivative equations (3.4) are nonlinear equations, their solutions will
be obtained numerically by using the Math-Cade program as will be seen in Section 5.1. The
second partial derivatives of the log-likelihood function (3.3) with respect to the parameters
C, P, y, and 0 are as follows:

azlnL YZ] 121 1)
0C? Y

6(6+1)ZZ6U§2 5] +9222(1 6ij)Z3e Tf}

j=li=1 j=li=1

0’InL k %
or: -C Z 6ijInSj[0;;(C(O + 1)&ij (1 - vij) —1) + (0 + 1)¢;; In Sj]
i1i=1

.

j=1i=1

k 1
03,3 (1-6;7)Z;In S;(CQ;(1- py) +InS;) }

=

FInL -1 &I k
9v2 ) Z 6 -(0+1) ZZ ijV 1] 922(1 611)ﬂ]
Y Y j=1li=1 j=1 j=1i=1
FInL -1]1&I
— = F{EZZ%VU (1-0)+(1+0)(1-vy)] - 22(1 61])/1]}
j=li=1 j=1i=1

=

J

k
> 35[0 + 1)&ij(Coi; (1 - v) +In ;) - 03]
j=1i=1

0’InL _
aCcapP
k N
+03. >, (1-6)Z;(CQ(1 - py) +In§j) o,
i=1i=1

O?InL
sot-2aengEnua-m eEEa-sza-w}

j=1i=1 j=1i=1

d*InL 0+1 k1
acri;e {ZZS’J§‘1< ( ; )(1‘”if)>+ZZ(1—5ii)#iZf}f

i=1i=1 j=1i=1
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2 —
%IlgyL {(9+1)ZZGW§U(1 vij) In'S; +GZZ(1 6)Z;(1- y,)lnS}

j=li=1 j=1i=1
#InL
apae

o*InL _ -1
oyo0 v

j

M»

i=1

.
Il
—

Sy InS;[1- (1+607) (1-vy)]| + 2;_11]'1(1—6i]-)y]-z,~1nsj},
peries

3

J

Mw

Gt = (1+607) (1= vy)] + Ek:i 1- 61-]-)/1]2-},

i=1 j=li=1

I
—_

j

(3.5)

where Q; = Sij InS;.
Therefore, the elements of the Fisher information matrix for the MLE can be obtained
as the expectations of the negative of the second partial derivatives, that is,

/azlnL #InL d*InL azlnL\
Oc®>  0cop OcOy  0cof
PInL d*InL &*InL

fu fiz fiz fua

Fo fo f fou _E op?2  Opdy Opdo (3.6)
f3 fa o*InL &InL '
fu oy?  0yoo

0?InL

\ 207 /

The asymptotic variance-covariance matrix for the MLE is defined as the inverse of the Fisher
information matrix (3.6), that is,

S=FL (3.7)

3.2, Prediction of the Scale Parameter and the Reliability Function

To predict the value of the scale parameter a,, under the usual condition stress V,, the in-
variance property of MLE is used (for more details see Meeker et al. [8]), that is,

= v*
a=CSP h Y= —
CS,, where S v

u

) (3.8)

nj
1:1[ Z] 1n]

The MLE of the reliability function at the lifetime x, under the usual condition stress
V., is given by

Ry(x0) = <1 + ge"‘”x°> 6- (3.9)
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4. Optimum Test Plan

Before starting an accelerated life test (which is sometimes an expensive and difficult en-
deavor), it is advisable to have a plan that helps in accurately estimating reliability at op-
erating conditions while minimizing test time and cost.

In this section, we determine the best choice of the values of the censoring times T}, j =
1,...,k, according to the D-Optimality criterion. The criterion is based on the minimization
of the determinant of Fisher information matrix of the MLE of the model parameters (Gouno
[25]). Therefore, the optimal value of T; at each stress level V;, j = 1,..., k, can be obtained by
solving the following equation:

O|F| .
—— =0 =1,...,k .

aT] 7 ] 7 7 (4 1)
The determinant of F and the derivation of (4.1) are placed in the appendix. To get the
optimum values of the stress change time T; and T, that minimized |F| of the MLE under
the stress level V;, j = 1,2, the numerical solution is obtained as will be shown in Section 5.2.

5. Simulation Studies

This section presents the numerical solutions to obtain the MLE of the unknown parameters
C, P, y, and 0, their mean squared errors (MSEs), relative absolute biases (RAB), Lower
Bound (LB), Upper Bound (UB), the estimated of scale parameter &, and reliability function
R(xp) under normal use conditions V,,. Also, it presents the numerical solutions to determine
the best choice values of the stress change time T} and T73.

5.1. MLE under Type-I Censoring

In this section, the numerical solution is performed according to the following steps.

(i) For given values of C, P, and stress level V}, j = 1,2,3, the values of aj, j = 1,2,3 are
calculated according to (2.5).

(ii) Generate a random sample of size N from the 3-parameter-generalized logistic
distribution and obtain the random variables x;;, {i = 1,...,n;, j = 1,...,k} for
givenvaluesofn;, Tj, j = 1,..., k, and different initial guesses of the true parameters
a,v,0,say a, Yo, Oo.

(iii) Based on the values of n;, T}, Vj, xij, {i = 1,...,n;, j = 1,...,k}, and V,, the MLE
and their MSE, RAB, LB, and UB, in addition to a,, and ﬁu (x0), are obtained.

(iv) The steps are repeated more than 150 times until getting the MLE as shown in

Table 1.
The numerical results which are placed in Tables 1 to 4 are based on 1y =29, n, = 10, n3 = 2,

T1 = 4, T2 = 3, T3 = 2, V1 = 075, Vz = 15, V3 = 225, and Vu =0.5.

From the results of Tables 1, 2, 3 and 4, we observe that the MSE of the scale parameter
aj, j =1,2,3,decreases as the stress value V;, j = 1,2, 3, increases. In general, the MSE decrease
as the values of Cy and y, decreases at the same values of Py and 6y, while in the variance-
covariance matrix we observe that the covariance between C and P is the smallest one and
converges to zero. The reliability decrease when the mission time x, increases. It is reduced
when the values of C decrease and the values of Py, yp, and 6 increase at the same mission
time.
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Table 1: The MLE, RAB, and MSE.
Co Py Yo 6o Parameter MLE RAB MSE
C 1.10902 0.10902 0.01189
P 0.98314 0.01686 0.00028
Y 1.22511 0.01991 0.00062
1.0 1.0 1.25 0.7 0 0.88398 0.11602 0.01346
o 1.38040 0.10486 0.01717
an 0.69831 0.11785 0.00542
as 0.46874 0.12552 0.00273
C 1.15695 0.15695 0.02463
P 0.9846 0.0154 0.00024
Y 1.23098 0.05309 0.00476
1.0 1.0 1.3 1.0 0 0.87707 0.12293 0.12446
o 1.44053 0.15299 0.03654
ar 0.72799 0.16536 0.01067
as 0.48837 0.17266 0.00517
C 1.35169 0.35169 0.12369
P 0.99012 0.00988 0.00010
Y 1.25504 0.16331 0.06001
1.0 1.0 15 1.0 0 0.84992 0.15008 0.02252
a 1.68507 0.34872 0.18982
ap 0.84832 0.35799 0.05001
as 0.56782 0.36344 0.02291
C 1.26473 0.26473 0.07008
P 0.97595 0.11277 0.01539
y 1.37052 0.02106 0.00087
1.0 1.1 14 1.0 0 0.8474 0.1526 0.02329
a 1.5717 0.23028 0.08654
ar 0.79906 0.34074 0.04124
as 0.53793 0.4099 0.02446
C 1.14000 0.08800 0.01210
P 0.95459 0.13219 0.02114
Y 1.37506 0.10005 0.01564
1.25 1.1 1.25 1.0 0 1.01030 0.01030 0.00011
o 1.40997 0.11705 0.03494
ap 0.72753 0.02342 0.00030
as 0.49403 0.03589 0.00029
C 0.91213 0.34848 0.23802
r 0.68352 0.31648 0.10016
Y 1.25991 0.25991 0.06755
14 1.0 1.0 0.7 0 1.10442 0.57774 0.16356
o 1.06206 0.39281 0.47207
1% 0.66129 0.24387 0.04549
as 0.50122 0.14034 0.00670
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Table 1: Continued.
Co b, Yo 6o Parameter MLE RAB MSE
C 0.91672 0.3452 0.23356
P 0.84089 0.29926 0.12896
Y 1.49253 0.49253 0.24259
14 12 1.0 0.9 0 1.10045 0.22272 0.04018
o 1.10547 0.39552 0.52319
a 0.61718 0.22467 0.03198
as 0.43888 0.10314 0.00255
Table 2: The confidence intervals.
Co & Yo 6o Parameter Variance L.B U.B
C 0.05771 0.79600 1.42204
1.0 1.0 105 07 0.21348 0.38110 1.58518
Y 0.32283 0.48477 1.96545
0 0.35710 0.10533 1.66263
C 0.05362 0.85523 1.45867
1.0 1.0 13 1.0 P 0.22330 0.36887 1.60033
y 0.36304 0.44588 2.01608
0 0.33362 0.12446 1.62968
C 0.05225 1.05385 1.64953
1.0 1.0 15 1.0 P 0.26782 0.31580 1.66444
Y 0.74628 0.12942 2.38066
0 0.36300 0.06488 1.63496
C 0.03979 1.00482 1.52464
1.0 11 14 1.0 P 0.25300 0.32055 1.63135
Y 0.32636 0.62614 2.11490
0 0.22237 0.23296 1.46184
C 0.10822 0.71135 1.56865
1.25 11 1.25 1.0 P 0.17555 0.40865 1.50053
Y 0.28023 0.68529 2.06483
0 0.42254 0.16331 1.85729
C 0.09833 0.50354 1.32072
14 1.0 1.0 0.7 P 0.15330 0.17334 1.19370
y 0.09398 0.86046 1.65936
0 0.09605 0.70059 1.50825
C 0.25885 0.25379 1.57965
14 12 1.0 0.9 P 0.14056 0.35238 1.32940
Y 0.11485 1.00334 1.98172
0 0.37572 0.01707 1.99193

5.2. Optimum Test Plan of Censoring Times

In order to obtain the optimum values of the censoring times T7 and T, a numerical solution
is performed by generating a random sample of size N from the 3-parameter-generalized
logistic distribution. The random variables x;; {i = 1,...,n;, j = 1,2} for given values of n;,
T;j,j = 1,2, and different values of (Co, Py, yo, o) are obtained. Therefore, the optimum values
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Table 3: The asymptotic variance-covariance matrix.

Co b, Yo 6o Parameter C P y 0
C 0.05771 0.00595 0.09077 -0.117570
1.0 1.0 1.25 0.7 P 0.21348 0.04473 —-0.05503
Y 0.32283 -0.26978
0 0.35710
C 0.05362 0.00473 0.09169 -0.10734
1.0 1.0 13 1.0 P 0.22330 0.04694 —0.05256
Y 0.36304 -0.27708
0 0.33362
C 0.05225 0.00622 0.13867 -0.10922
1.0 1.0 15 1.0 r 0.26782 0.07868 -0.06110
Y 0.74628 —0.44309
0 0.36300
C 0.03979 -0.00515 0.06411 -0.06696
1.0 11 14 1.0 P 0.25300 0.03287 -0.03543
Y 0.32636 019642
0 0.22237
C 0.10822 —0.00295 0.12193 -0.18224
1.25 11 1.25 1.0 r 0.17555 0.18702 —-0.03295
Y 0.28023 -0.27304
0 0.42254
C 0.09833 -0.03150 0.04490 -0.07491
14 1.0 1.0 0.7 P 0.15330 —0.00493 0.00718
Y 0.09398 -0.05331
0 0.09605
C 0.25885 —0.03597 0.13991 -0.35472
14 12 1.0 0.9 P 0.14056 —0.00693 0.01586
Y 0.11485 -0.14831
0 0.37572

of the stress change time T, Ty, say T}, T;, and the Generalized Asymptotic Variance (GAV)
are computed. The numerical results are placed in Tables 5, 6, 7, 8, and 9, which are also based
onn; =29,n,=10,T, =4,7T,=3,V; =0.75,V, =1.5,and V,, = 0.5.

As seen, the results show the optimum values of T}, T;, and GAV at different values
of (Co, P, y0, 6p) and different values of N. In general, we observe that GAV decreases as the
sample size increases.

6. Conclusion

The GL distribution has been extensively used in many different areas and it is very useful in
a wide variety of applications, especially in the analysis of survival data. In addition, it is used
as the name for several different families of probability distribution. This paper presented the
Maximum Likelihood method of the parameter estimation with type-I censoring. The data
failure times at each stress level are assumed to follow the 3-parameter-generalized logistic
distribution with scale parameter that is an inverse power law function. The ML estimation,
Fisher’s information matrix, the asymptomatic variance-covariance matrix, the prediction
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Table 4: Estimates a and R(x() under normal conditions.
Co Py Yo 0o @y Xo Ry (x0)
0.01 0.43982
1.0 1.0 1.25 0.7 1.18740 0.70 0.17726
1.40 0.05484
2.00 0.01850
0.02 0.4256
1.0 1.0 1.3 1.0 1.87408 0.40 0.26659
1.20 0.07507
2.00 0.00705
0.005 0.39775
1.0 1.0 15 1.0 1.87408 0.01 0.39551
1.00 0.09283
2.00 0.01546
0.02 0.40700
1.0 1.1 14 1.0 1.99560 0.40 0.24330
1.20 0.06116
2.50 0.00484
0.02 0.43216
1.25 1.1 1.25 1.0 2.49450 0.40 0.22777
1.20 0.03855
2.50 0.00156
0.02 0.52574
14 1.0 1.0 0.7 2.62371 0.40 0.32054
1.20 0.08422
2.50 0.00789
0.10 0.43900
1.4 1.2 1.0 0.9 2.97490 0.90 0.07742
1.50 0.01624
2.00 0.00429
Table 5: The optimum values of T}, T;, and GAV at (Co =1, Py =1, y0 = 1.5,09 = 1).
N T T, T; T; GAV
100 3 4 0.124 0.116 0.00000528
200 2 3 0.292 0.332 0.00000022
300 3 8 0.074 0.237 0.00000009
400 2 7 0.238 0.893 0.00000004
500 3 7 0.129 0.260 0.00000001

of the value of the scale parameter, and the reliability function under the usual conditions
stress were obtained for various combinations of the model parameters. In additional, the
corresponding optimum value of the stress change time is obtained numerically by the D-
optimality criterion. Since standard Logistic, four-parameter-extended GL, four-parameter-
extended GL type-I, two-parameter GL, type-I GL, Generalized Log-logistic, standard Log-
logistic, Logistic Exponential, Exponentiated Exponential (for x > 0), Generalized Burr, Burr
111, and Burr XII distributions are special cases from the GL distribution, then their results of
the MLE and optimum test plan become particular cases of the results obtained here.
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Table 6: The optimum values of T}, T;, and GAV at (Co = 1.1, Po =1, yp = 1.3, 0y = 1).

N T, T, T; T; GAV
100 3 4 0.093 0.216 0.000002934
200 3 3 0.664 0.616 0.000000118
300 2 4 1.713 1.911 0.000000021
400 3 6 0.129 0.189 0.000000007
500 3 8 0.154 0.215 0.000000005

Table 7: The optimum values of T}, T;, and GAV at (Co = 1.25, Py = 1.2, yp = 1.2, 00 = 1).
N T T, T: T; GAV
100 3 3 0.114 0.625 0.000001655

200 2 8 0.087 0.142 0.000000312
300 2 7 0.073 0.140 0.000000109
400 3 7 0.014 0.077 0.000000022
500 2 5 0.981 1.356 0.000000003

Table 8: The optimum values of T}, T;, and GAV at (Co = 1.2, Py = 1.2, yo = 1.5, 6y = 1.2).

N T, T, T; T; GAV
100 1 4 0.681 1.459 0.000007026
200 1 2 1.683 1.662 0.000000567
300 2 5 0.320 1.235 0.000000059
400 1 5 0.668 1.412 0.000000017
500 2 6 0.554 1.19 0.000000013

Table 9: The optimum values of T}, T;, and GAV at (Co =1, Py = 1.1, yp = 1.4, 0y = 1).
N T; T> T; T3 GAV
100 3 4 0.090 0.024 0.000002541

200 2 3 0.263 0.192 0.000000119
300 3 3 0.088 0.112 0.000000409
400 3 5 0.336 0.399 0.000000006
500 3 8 0.025 0.065 0.000000003

Appendix
The determinant of F is

|F| = (f33f44 - f324> <f11f22 —f122> = (fasfaa = faafan) (f11fo3 = fr2f13)
+ (foafaa — foafss) (frifoa — fiofra) — (fiafaa — frafsa) (frafor — fiof23) (A1)

+ (f1afsa — fasf1a) (frafor = fiofoa) = (fiafoa — fosfra) (frafos — fi3foa).
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The derivative of |F| for obtaining the optimum value of the censoring time Tj, j =
1,..., k is given as follows:

aal_]l:;| - (f33f44 _f§4> (firfo2 + fuufy = 2f12f1s)

+ (frafua+ frsfia = 2faaf) (fufoz - £)

= (fasfaa+ fo3fus = foufos = fosfas) (fuifos = fraf1s)
= (fosfaa = fasfsa) (firfos + fuifas = flofis = frafis)
+ (fosfas = fasfss) (flrfos + fuifog = flofia = f2fis)
+ (fasfos + f23f34 = foufas = fosfia) (furfou = frofia)
= (fisfaa = frafsa) (fisf + frafro = flofos = fr2f3s)
= (fiafu + frafi = frafon = frafas) (f1af22 = frofos)
+ (f1afa = faafra) (flafor + frafso = flofos = frofon)
+ (flafss + fi3fa = fisfua = faafia) (frafe2 = frofoe)
= (f13f2s = fo3fua) (flafos + frafss = flsfos = fiafoa)

~ (fisfoa + fi3fou = s f1a = faafis) (frafos = fiafas),
(A2)

where

) favi 7
fii= 72(1 - 6)8;"Z;(1- ) [CS; " T;(1 - 217) +2],
i=1

nj 2
fin = CO3,(1-6;)S! (1n )’ [CS,"Ty(1 - ) (1= €2)) + (1+ €8Ty 1 - ) |,
i=1

-2CO &
fi= T;(l -6j)S;" (1 - wj)p,

, 20
fu= TZ(l - 6i}')SiP(1 _.”j).”]z'/

i=1

nj 2
fia =03,(1-6,)S] ISy €Ty (1= ) (1= €Z) + (1+ €5 T (1-w) ) |,
i=1

, 0
fly = ;Z(l — 6ij) ST i (1 - pj) [1 +CS; T (1~ 2;4,-)],
i=1
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j
fis= 2 (1= 65) S (1+2CS,"T; (1 - y) ),

i=1

. CO L
fas = 72(1 - 6) S} InSjp; (1- py) [1+CS;°T; (1 - 2p7)],
i=1

j
frs = CX(1=6)S) InSj? [1+2CS, Ty (1- 7)),
i=1

. 20 L
fa = 72(1 - 61’]’)511')/‘]2'(1 — 1)
i=1

(A.3)

References

[1] J. F. Lawless, “Confidence interval estimation in the inverse power law model,” Journal of the Royal
Statistical Society: Series C, vol. 25, no. 2, pp. 128-138, 1976.

[2] J. I. McCool, “Confidence limits for weibull regression with censored data,” IEEE Transactions on
Reliability, vol. R-29, no. 2, pp. 145-150, 1980.

[3] D.S. Bai and S. W. Chung, “An accelerated life test model with the inverse power law,” Reliability
Engineering and System Safety, vol. 24, no. 3, pp. 223-230, 1989.

[4] M. M. Bugaighis, “Properties of the MLE for parameters of a Weibull regression model under type I
censoring,” IEEE Transactions on Reliability, vol. 39, no. 1, pp. 102-105, 1990.

[5] A.J. Watkins, “On the analysis of accelerated life-testing experiments,” IEEE Transactions on Reliability,
vol. 40, no. 1, pp. 98-101, 1991.

[6] A. A. Abdel-Ghaly, A. F. Attia, and H. M. Aly, “Estimation of the parameters of pareto distribution
and the reliability function using accelerated life testing with censoring,” Communications in Statistics
Part B, vol. 27, no. 2, pp. 469484, 1998.

[7] E. A. El-Dessouky, On the use of bayesian approach in accelerated life testing, M.S. thesis, Institute of
Statistical Studies and Research, Cairo University, Egypt, 2001.

[8] W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,”
Technometrics, vol. 40, no. 2, pp. 89-99, 1998.

[9] W. Nelson and T. J. Kielpinski, “Theory for optimum censored accelerated life tests for normal and
lognormal life distributions,” Technometrics, vol. 18, no. 1, pp. 105-114, 1976.

[10] W. Nelson, Accelerated Life Testing: Statistical Models, Test Plan and Data Analysis, John Wiley & Sons,
New York, NY, USA, 1990.

[11] G.B. Yang, “Optimum constant-stress accelerated life-test plans,” IEEE Transactions on Reliability, vol.
43, no. 4, pp. 575-581, 1994.

[12] C. Ding, C. Yang, and S. K. Tse, “Accelerated life test sampling plans for the Weibull distribution
under type I progressive interval censoring with random removals,” Journal of Statistical Computation
and Simulation, vol. 80, no. 8, pp. 903-914, 2010.

[13] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vol. 2 of Wiley Series
in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, New
York, NY, USA, 2nd edition, 1995.

[14] S.Nadarajah and S. Kotz, “A generalized logistic distribution,” International Journal of Mathematics and
Mathematical Sciences, vol. 2005, no. 19, pp. 3169-3174, 2005.

[15] A. M. Mathai and S. B. Provost, “On the distribution of order statistics from generalized logistic
samples,” International Journal of Statistics, vol. 62, no. 1, pp. 63-71, 2004.

[16] K. Tolikas, “Value-at-risk and extreme value distributions for financial returns,” Journal of Risk, vol.
10, pp. 31-77, 2008.

[17] M. R. Alkasasbeh and M. Z. Raqab, “Estimation of the generalized logistic distribution parameters:
comparative study,” Statistical Methodology, vol. 6, no. 3, pp. 262-279, 2009.



ISRN Applied Mathematics 15

[18] K. Tolikas and G. D. Gettinby, “Modelling the distribution of the extreme share returns in Singapore,”
Journal of Empirical Finance, vol. 16, no. 2, pp. 254-263, 2009.

[19] A. Shabri, U. N. Ahmad, Z. A. Zakaria et al., “TL-moments and L-moments estimation of the
generalized logistic distribution,” Journal of Mathematical Research, vol. 10, no. 10, pp. 97-106, 2011.

[20] K. Tolikas, “The rare event risk in African emerging stock markets,” Managerial Finance, vol. 37, no. 3,
pp- 275-294, 2011.

[21] H. Shin, T. Kim, S. Kim, and J. H. Heo, “Estimation of asymptotic variances of quantiles for the
generalized logistic distribution,” Stochastic Environmental Research and Risk Assessment, vol. 24, no.
2, pp. 183-197, 2010.

[22] R. K. Rai, S. Sarkar, and V. P. Singh, “Evaluation of the adequacy of statistical distribution functions
for deriving unit hydrograph,” Water Resources Management, vol. 23, no. 5, pp. 899-929, 2009.

[23] S. Kim, H. Shin, T. Kim, and J. Heo, “Derivation of the probability plot correlation coefficient test
statistics for the generalized logistic distribution,” in Proceedings of the International Workshop Advances
in Statistical Hydrology, Taormina, Italy, 2010.

[24] G. Molenberghs and G. Verbeke, “On the Weibull-Gamma frailty model, its infinite moments, and its
connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions,” Journal of
Statistical Planning and Inference, vol. 14, no. 2, pp. 861-868, 2011.

[25] E. Gouno, “Optimum step-stress for temperature accelerated life testing,” Quality and Reliability
Engineering International, vol. 23, no. 8, pp. 915-924, 2007.



Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




