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Abstract

Attitude Determination and Control Systems (ADCS) are critical to the operation of satel-

lites that require attitude knowledge and/or attitude control to achieve mission success.

Furthermore, ADCS systems only operate as designed in the reduced friction, micro-gravity

environment of space. Simulating these characteristics of space in a laboratory environment

in order to test individual ADCS components and integrated ADCS systems is an important

but challenging step in verifying and validating a satellite's ADCS design.

The purpose of this thesis is to design and develop an ADCS testbed capable of sim-

ulating the reduced fiction, micro-gravity environment of space within the Massachusetts

Institute of Technology's Space Systems Laboratory. The ADCS testbed is based on a table-

top style, three degree of freedom, rotational air bearing, which uses four reaction wheels

for attitude control and a series of sensors for attitude determination. The testbed includes

all the equipment necessary to allow for closed loop testing of individual ADCS components

and integrated ADCS systems in the simulated inertial environment of space. In addition

to the physical ADCS testbed, a MATLAB Simulink based model of the ADCS testbed

is developed to predict the performance of hardware components and software algorithms

before the components and algorithms are integrated into the ADCS testbed. The final

objective of this thesis is to validate the operation of the ADCS testbed and simulation to

prepare the tool for use by satellite design teams.

DISCLAIMER: The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the United States Air Force, Department of Defense,
or the U.S. Government.

Thesis Supervisor: David W. Miller
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Problem Statement

Developing and testing attitude determination and control systems (ADCS) in a university

environment is a challenging task. Testing hardware in the loop ADCS systems in a lab-

oratory is difficult due to the fact that ADCS subsystems often rely on the micro-gravity,

reduced friction environment of space to perform as designed. Equipment needed to simu-

late the key characteristics of the space environment for ADCS testing has been previously

designed and built by organizations for internal use, but such equipment is not available for

purchase. However, without hardware in the loop testing in a simulated micro-gravity, re-

duced friction environment, ADCS engineers must rely solely on isolated component testing

and simulation to validate the operation of the integrated ADCS subsystem. In this case,

the subsystem will not be fully operational until it is on orbit where design and development

errors likely cannot be corrected and can easily cause mission failure.

1.2 Motivation

Designing and developing an ADCS testbed for use within the Massachusetts Institute of

Technology's Space Systems Laboratory (MIT's SSL) will provide student satellite design

engineers the means to test ADCS hardware components, software algorithms, and inte-

grated ADCS subsystems in a simulated micro-gravity, reduced friction environment. Many

students at the undergraduate and even graduate level have no experience in satellite de-

sign, much less ADCS subsystem design. Therefore, providing these students with a means



to validate hardware in the loop ADCS systems after conceptual designs and simulations

have been produced is critical to satellite mission assurance. Student engineers as well as

university faculty will be able to gain confidence in a given ADCS subsystem once "test as

you fly" results are available to verify the ADCS system's simulation results.

1.3 Thesis Objectives

" Design and develop a small satellite ADCS testbed capable of meeting the following

requirements (further described in Section 2.5).

o Provide class project support for estimation and control theory students.

o Provide ADCS hardware component testing capability.

o Provide ADCS estimation and control algorithm testing capability.

o Provide a platform for integrated ADCS subsystem testing.

" Verify the individual hardware components and baseline software used in the ADCS

testbed design.

" Validate the integrated ADCS Testbed and the supporting MATLAB based simula-

tion.

1.4 Thesis Outline

e Chapter 2 covers the current state of satellite ADCS systems to include those of several

small satellites being developed within the SSL. The chapter also discusses recent on-

orbit ADCS failures. The chapter then covers the current state of ADCS testbed

technology and concludes with the design requirements for the testbed developed as

part of this thesis.

e Chapter 3 discusses the development of the rotational air bearing simulation. First,

the chapter defines the coordinate systems used by the simulation and physical air

bearing. The chapter then develops the air bearing's equations of motion. Finally, the

chapter discusses the individual sections of the air bearing simulation, which include

the reaction wheel and air bearing plant, the attitude estimation module, the attitude

command module, and the attitude control module.



" Chapter 4 discusses the design and development of the physical air bearing to include

the air bearing's structure, the power system, the avionics and communication sys-

tem, the baseline set of attitude determination sensors, the baseline reaction wheel

configuration, and the ground station computer. The chapter then covers the default

software algorithms used by the air bearing's on-board processors. The chapter con-

cludes by discussing the air bearing's external magnetic field generator (EMFG) and

the benefits of integrating a SPHERES satellite on the air bearing.

" Chapter 5 covers the analysis of the air bearing and accompanying simulation. First,

the chapter covers attitude sensor characterization. The chapter then discusses re-

action wheel response characterization. Air bearing disturbances like center of mass

misalignment, compressed air vibration, and friction are discussed, and the chapter

concludes by analyzing the results of several integrated system tests.

" Chapter 6 summarizes the thesis and discusses future work to expand the capabilities

of the ADCS testbed.
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Chapter 2

Background

2.1 Attitude Determination and Control System Overview

A satellite's ADCS system is used to stabilize and orient the vehicle as required by the

Concept of Operations (CONOPs) in the presence of external disturbance torques acting on

the satellite. The ADCS system uses external references to determine the satellite's angular

orientation with respect to a fixed inertial reference frame, usually an Earth centered,

equatorial frame for Earth orbiting satellites. External attitude references include the Sun,

Earth's horizon, the local magnetic field, and the stars. The satellite may also use inertial

sensors like angular rate gyroscopes to measure angular rate and estimate the satellite's

angular orientation between fixed inertial reference measurements, or while fixed inertial

reference measurements are unavailable. For example, sun sensors cannot provide a fixed

inertial reference measurement while the satellite is in eclipse [52].

For attitude control, ADCS systems impose torques on the satellite using a series of

actuators. Thrusters of all shapes, sizes, and operating characteristics are used to produce

external torques for attitude control, but they require an expendable fuel source. Magnetic

torque coils and rods are also used to produce external torques on the satellite by acting

against Earth's local magnetic field. Reaction wheels are common satellite attitude actua-

tors because they produce internal torques that do not change the angular momentum of

the satellite.

The ADCS system must maintain attitude control in the presence of constant distur-

bance torques on the satellite. Disturbance torques are a function of the inertial properties

of a satellite and its orbital location. For small satellites in Low Earth Orbit (LEO), the



most common disturbance torques are caused by solar radiation pressure, interaction with

Earth's local magnetic field, aerodynamic drag due to Earth's atmosphere, and gravity-

gradient torque. These disturbances exert external torques, which build up angular mo-

mentum within the satellite. Reaction wheels may be used to maintain satellite stability

and angular orientation in the presence of disturbance torques, but they can only store

angular momentum and cannot dissipate momentum. When the reaction wheels are near

their maximum angular momentum storage capability, external torques must be applied

using thrusters or magnetic torquers to reduce the angular momentum stored in the wheels.

This process is commonly referred to as desaturating the reaction wheels [52]

Satellite ADCS systems are designed to meet the requirements of their parent satellite

making each ADCS system unique. Large satellites require attitude control actuators with

large torque capabilities. Small satellites require actuators with less torque capability. Pre-

cision payloads may require ADCS systems capable of determining and controlling attitude

to within an arc-second (1/3600 of a degree), while some payloads may only require attitude

control to within twenty degrees, or possibly no attitude control at all. ADCS systems must

be custom designed and built for each satellite program with mission success often relying

on the flawless operation of the ADCS system.

2.2 State of Small Satellite ADCS Systems

2.2.1 First Three Axis Stabilized Small Satellite

The first three axis stabilized small satellite was the Surrey Nanosatellite Applications Plat-

form (SNAP-1) developed and built by Surrey Satellite Technology Ltd. (SSTL). SNAP-1

was launched on 28 June, 2000 on-board a Russian Cosmos rocket [51]. The primary mission

of the 6.5 kilogram satellite was to demonstrate three axis attitude control as well as or-

bital maneuvering [51]. The SNAP-1 satellite used a three axis magnetometer, an on-board

camera, and a Kalman Filter for attitude estimation, and three magnetic torque rods in

conjunction with a single pitch axis momentum wheel for attitude control [51]. SNAP-1 was

also the first small satellite to use the Global Positioning System (GPS) for orbital position

acquisition [51]. SNAP-1 was able to successfully control its attitude and use a butane

fueled cold gas thruster to maneuver itself to within 2000 kilometers of its target satellite

after starting more than 15000 kilometers away [51]. Though SNAP-1 did not rendezvous



with the target satellite, it proved that small satellites can achieve three axis stability and

autonomously perform complex orbital maneuvers [51].

2.2.2 Space Test Program S26 Payloads

The current state of the art for small satellite ADCS systems is well represented by the

payloads launched as part of the most recent Space Test Program (STP) mission. The

mission, known as STP-S26 launched from Kodiak Launch Complex (KLC) in Kodiak,

Alaska on 19 November, 2010 [?]. A converted intercontinental ballistic missile known as

a Minotaur IV was the launch vehicle used for the mission [?]. The Minotaur IV carried

seven satellites to orbit; four EELV Secondary Payload Adapter (ESPA) class satellites

and three cubesats [?]. The four ESPA class satellites attached to the launch vehicle using

the Minotaur IV Multi-payload Adapter (MPA) in its first ever flight [?]. Two of the

three cubesats were attached directly to the launch vehicle using Poly-PicoSatellite Orbital

Deployers (P-Pods) [?]. The remaining cubesat, NASA's Nanosail D cubesat was integrated

into the FASTSAT ESPA class satellite. The remaining five satellites making up the STP-

S26 mission include FalconSat-5, FASTRAC, STPSat-2, O/OREOS, and RAX [?]. Figure 2-

1 shows the four ESPA class satellites integrated onto the MPA.

FalconSat-5 is the fifth satellite built by the Astronautical Engineering Department

at the United States Air Force Academy (USAFA) and the second ESPA class satellite.

The satellite is carrying four payloads, two of which are SERB ranked [37]. The primary

mission of FalconSat-5 is to use its payloads to collect space weather measurements [37]. In

order to operate its payloads as required, the satellite must achieve and maintain three axis

stability. FalconSat-5 is equipped with four sun sensors, a three axis magnetometer, and an

inertial measurement unit capable of measuring three axis angular rate. Using these sensors,

FalconSat-5 estimates its attitude and uses three orthogonal reaction wheels for primary

attitude control. Though three orthogonal reaction wheels allow for a fully controllable

system, they provide zero redundancy. For reaction wheel desaturation, FalconSat-5 uses

three orthogonal magnetic torque rods [37]. FalconSat-5's attitude estimation sensors and

attitude control actuators represent a common ADCS configuration amongst current small

satellites; a fully observable, fully controllable, zero redundancy system. FalconSat-5 is the

far right satellite seen in Figure 2-1.



Figure 2-1: ESPA Class Satellites Mounted on Minotaur IV MPA For Launch [31]

FASTRAC is an ESPA class satellite designed and built by the University of Texas

Nanosatellite Program at UT Austin [11]. The mission of FASTRAC is threefold. First,

the satellite will demonstrate "on-orbit real-time GPS relative navigation solution[s] via

real-time crosslink data exchange" [11]. Second, the satellite will demonstrate "on-orbit

real-time attitude determination using a single frequency, C/A-code, reprogrammable GPS

receiver" [11]. Finally, the satellite will demonstrate the use of a "micro-discharge plasma

thruster" [11]. FASTRAC is made up of two sections that will separate in space [11]. Both

require three axis attitude determination as a mission objective of FASTRAC, and they

will each accomplish this using a single GPS receiver in combination with a three axis mag-

netometer [11]. Once separated, the two sections will attempt to control relative distance,

though attitude is not controlled on either section [27]. One section carries a thruster that

will be fired when the satellite's attitude is estimated to be within fifteen degrees of the de-

sired thrust direction [11]. The other satellite carries an inertial measurement unit that will

be used to estimate relative distance between the two sections [27]. FASTRAC's innovative

means of attitude determination will provide additional attitude sensing capability to

.- . . .. .. .... ... . ........ ....... ...



future satellites with little additional cost since many satellites already carry GPS receivers

and magnetometers. FASTRAC is the front satellite seen in Figure 2-1.

NASA's Fast, Affordable, Science and Technology Satellite (FASTSAT) is an ESPA class

satellite designed and built at the Marshall Space Flight Center in Huntsville, Alabama [2].

The mission of FASTSAT is "to demonstrate the capability to build, design and test a mi-

crosatellite platform to enable governmental, academic and industry researchers to conduct

low-cost scientific and technology experiments on an autonomous satellite in space" [2].

Though FASTSAT's mission objective is to be a cheap, quick, easy to develop spacecraft,

the FASTSAT launched on STP-S26 carried several unique payloads, which include the

first Nanosail to be deployed in low Earth orbit, a miniature stax tracker, a thermosphere

temperature imager, and a miniature imager for neutral Ionospheric atoms and Magneto-

spheric electrons [2]. Though the payloads will differ for each FASTSAT, the satellite bus

will be primarily the same. The bus will be three axis stabilized with attitude estimation

capability of 0.02 degrees and attitude control capability of two degrees [12]. FASTSAT is

shown furthest back in Figure 2-1.

STPSat-2 is an ESPA class satellite built by Ball Aerospace [7]. STPSat-2 carries two

payloads; SPEX (Space Phenomenology Experiment) will "evaluate sensor compatibility for

the space environment" and ODTML (Ocean Data Telemetry MicroSatLink) will provide

"two way data relay from terrestrial sensors to users" [14]. STPSat-2 is the first satellite

to use STP's Standard Interface Vehicle (SIV), which uses a common satellite bus and

payload integration system to allow for quick satellite design and build [7]. The satellite

bus used by the SIV is ComTech AeroAstro's Astro-200 satellite bus, which provides all of

the subsystems required to support the satellite's payloads [9]. The Astro-200 satellite bus

carries the satellite's ADCS system, which uses three orthogonal reaction wheels to provide

three axis stabilization [9]. The Astro-200 bus is designed to maintain Nadir pointing and

can control its attitude to within 0.1 degrees. STPSat-2 is shown on the far left in Figure 2-1.

NASA's second payload on STP-S26 is a three unit cubesat named Organism/Organic

Exposure to Orbital Stresses (O/OREOS) Nanosatellite, which was designed and built at the

Ames Research Center located at Moffett Field, California [3]. The mission of O/OREOS is

to "characterize the growth, activity, health and ability of microorganisms to adapt to the

stresses of the space environment" [3]. The cubesat has no active ADCS system, but uses

several passive attitude control components to manage angular rates. Permanent magnets



known as hysteresis rods are mounted to the satellite's structure, which will eventually

align the satellite with Earth's magnetic field [13]. Since Earth's magnetic field changes

slowly with a sinusoidal component having a period equal to the satellite's orbital period,

alignment with the magnetic field will be a relatively stable state.

The Radio Aurora Explorer (RAX) satellite is a three unit cubesat designed and built

by the University of Michigan and SRI International [18]. The mission of RAX is to "study

formations and distribution of magnetic field-aligned plasma irregularities located in the

lower ionosphere" [181. To do this, RAX will carry a UHF radar receiver which will measure

"dense plasma structures forming between E and F layers of the ionosphere" [18]. RAX will

estimate its attitude using a three axis magnetometer, a three axis inertial measurement

unit, and a set of sun sensors [18]. RAX will not be actively controlled, but will use passive

magnetic stabilization just like O/OREOS [18]. RAX will align itself with Earth's magnetic

field for attitude stability.

2.2.3 University Nanosat Program

The University Nanosat Program is an Air Force Research Laboratory (AFRL) sponsored

program that supports the development of small satellites in university environments across

the nation. The University Nanosat Program (UNP) sponsors roughly ten to twelve schools

in the development of ESPA class satellites over a two year period. The UNP program

provides financial support to each university over the two year development period, and

will sponsor the winning university satellite from each UNP cycle for launch [15]. The UNP

program is currently in the initial phases of its seventh two year satellite development cycle.

The winners of previous UNP cycles are a good representation for state of the art ESPA

class satellites. The first to be discussed is the winner of the third UNP cycle. The winning

satellite of UNP 3 is FASTRAC, which was launched in November, 2010 as part of STP-S26

as discussed above. The winning satellites from UNP 4, 5, and 6 will be briefly discussed

below.

The winning satellite from UNP 4 is the Cornell University Satellite (CUSat), which is an

ESPA class satellite designed and built at Cornell University [43]. The mission of CUSat is

to demonstrate formation flying capability precise enough to diagnose the structural health

and configuration of another satellite after orbital rendezvous [43]. CUSat is made of up

two functionally identical spacecraft that will separate from each other after being ejected



from the launch vehicle [43]. Using differential GPS with three separate GPS antennas,

each satellite section will be able to estimate its attitude to within two degrees as well as

estimate its orbital position to within a few meters [43]. Each satellite half will then use

pulsed-plasma thrusters (PPTs), torque coils, and miniature reaction wheels for three axis

attitude control and orbital maneuvering [43]. An image of CUSat in a thermal chamber is

shown in Figure 2-2(a).

(a) CUSat in Thermal Chamber (b) Computer Image of DANDE

Figure 2-2: UNP 4 and UNP 5 Winning Satellites [15]

The winner of UNP 5 is the Drag and Atmospheric Neutral Density Explorer (DANDE)

satellite, which is an ESPA class satellite designed and built by the University of Colorado

[53]. DANDE's mission is to "explore the spatial and temporal variability of the neutral

thermosphere at altitudes of 350 - 100 kilometers, and investigate how wind and density

variability over 500 - 3000 kilometers scales translate to drag forces on satellites" [1]. For

attitude estimation, DANDE will use a three axis magnetometer in combination with two

horizon crossing indicators (HCIs) [53]. DANDE will use two magnetic torque rods for

active attitude control with partial controllability [53]. The satellite will also use viscous

fluid nutation dampers for passive nutation damping [53]. Figure 2-2(b) gives a computer

generated image of the DANDE satellite.

.... ..... ......................... .. ........ - -- -----



The winner of the most recent UNP competition, UNP 6 is the Oculus satellite, which

is an ESPA class satellite designed and built by Michigan Technological University [24].

The mission of the Oculus spacecraft is to "demonstrate vision-based attitude control for

tracking resident space objects" [24]. Due to the satellite's mission, it requires inertial and

vision based attitude control [24]. For inertial attitude estimation, the Oculus satellite uses

a three axis magnetometer and a three axis rate gyroscope [24]. For vision based attitude

control, Oculus uses two cameras; the wide field-of-view (WFOV) camera for general target

location and the narrow field-of-view (NFOV) camera for target tracking [24]. Oculus uses

three orthogonal reaction wheels for attitude control, and three orthogonal magnetic torque

rods for reaction wheel angular momentum desaturation [24].

2.2.4 MIT Space Systems Laboratory Satellites

MIT's Space Systems Laboratory develops space hardware for operation within the Space

Shuttle, the International Space Station (ISS), and as free flying satellite systems. The SSL

has had several payloads fly on the Space Shuttle and currently operates three SPHERES

satellites on the ISS. The SSL's free flying satellite program includes a series of small

satellites in various stages of the satellite design process. This section will cover three of

the SSL's small satellites, which are CASTOR, ExoPlanetSat, and TERSat.

Cathode/Anode Satellite Thruster for Orbital Repositioning (CASTOR) is an ESPA

class satellite designed by undergraduate and graduate students within the SSL. CASTOR

was designed as part of the UNP 6 small satellite competition. CASTOR's mission is to

"validate the performance and application of Diverging Cusped Field Thruster (DCFT)

technology" [8]. A DCFT is a high efficiency, low thrust system that ionizes an inert

gas (Xenon in this case), and propels the ionized gas using a set of permanent magnets.

Though similar to a Hall Effect thruster, the DCFT uses permanent magnets rather than

electromagnets to create the magnetic field required to accelerate the ionized gas. Hall Effect

thrusters experience degradation due to the extremely hot ionized gas passing through the

engine nozzle. Due to differences in its structural design, the DCFT experiences significantly

less degradation, which will allow the DCFT to operate at high efficiency for longer than a

standard Hall Effect thruster [8].

The CASTOR satellite will provide the space support system necessary to operate the

DCFT on orbit and increase the thruster's technology readiness level (TRL). A SolidWorks



Figure 2-3: SolidWorks Rendering of CASTOR Satellite

model of the CASTOR satellite is shown in Figure 2-3. In order to provide the power

necessary to operate the DCFT as well as point the engine in the desired thrust direction,

CASTOR requires three axis stability. For attitude estimation, CASTOR uses four sun

sensors, two three axis magnetometers supported by a GPS unit, and a three axis inertial

measurement unit [8]. For attitude control, CASTOR uses three orthogonal reaction wheels,

which provide full controllability but no redundancy in case of wheel failure. The reaction

wheels are desaturated using three orthogonal torque coils [8]. An Extended Kalman Filter

is used to provide CASTOR's attitude estimate using sensor inputs, and a linear quadratic

regulator is used to provide attitude control commands to the reaction wheels. This ADCS

system will allow CASTOR to point its solar panels towards the sun for battery charging,

and point the engine in the desired thrust direction once per orbit as required by CASTOR's

CONOPs [8].

ExoPlanetSat is a three unit cubesat being designed and built by the SSL in coop-

eration with MIT's Department of Earth, Atmospheric, and Planetary Sciences (EAPS).

Figures 2-4(a) and 2-4(b) show ExoPlanetSat's internal component configuration and solar

panel configuration respectively. The mission of ExoPlanetSat is to "be capable of detect-

ing a transiting Earth-sized planet in the habitable zone of the brightest sun-like stars"

[10]. Though there are large scale satellites on orbit whose mission is to detect exoplanets,

ExoPlanetSat will be capable of looking at stars that are too bright for large satellites with

. . ... . .... .... .... .................. ...... ......... ....... -------



very sensitive optics to observe [10]. ExoPlanetSat is also meant to prove that small exo-

planet searching satellites with low budgets can be designed and successfully operated. If

successful, ExoPlanetSat will pave the way for many more copies of itself to be launched

and pointed towards other bright stars in Earth's sky.

(a) ExoPlanetSat Component Configuration (b) ExoPlanetSat Solar Panel Configuration

Figure 2-4: SolidWorks Rendering of ExoPlanetSat

ExoPlanetSat will detect exoplanets by staring at a single bright star for a long period of

time using the camera assembly shown in Figure 2-4(a). If an exoplanet orbiting the target

star passes between ExoPlanetSat and the target star, ExoPlanetSat's optical system will

be able to detect the decrease in light intensity from the target star [10]. In order for this

type of exoplanet detection to work, the satellite's ADCS system must be capable of keeping

the target star in almost exactly the same location with respect to ExoPlanetSat's optical

system. In order to achieve such precision three axis attitude control, ExoPlanetSat uses

two attitude control loops; a course and fine loop. The first attitude control loop, the course

loop, estimates and controls the entire satellite's attitude to within sixty arc-seconds [10].

ExoPlanetSat will use a three axis magnetometer and a three axis gyroscope for course

loop attitude estimation. For course loop attitude control, ExoPlanetSat will use three

orthogonal reaction wheels and three orthogonal torque coils [10]. The second attitude

control loop, the fine loop, estimates and controls the attitude of the satellite's optical

sensor in the two axes perpendicular to the vector pointing towards the target star [101.

The optical system estimates its attitude in the plane perpendicular to the target star vector

using the pattern of stars surrounding the target star. This portion of the optical system

works just like a star tracker. For fine loop attitude control, the optical system is mounted

............ ..-- ---- - -- -- _ __ -- __ ----- ---



on a piezoelectric stage that can move in both axes perpendicular to the target star vector.

The fine attitude control loop can estimate and control the attitude of the optical system to

within one arc-second, which is the mission requirement for stabilizing the optical system

with respect to the target star [10]. If successful, ExoPlanetSat will demonstrate the most

accurate three axis stabilized attitude control system ever attempted on a cubesat.

Tethered Environmental Reconditioning Satellite (TERSat) is a second ESPA class satel-

lite being developed within the SSL. TERSat is being developed as part of the seventh

iteration of the UNP small satellite competition. TERSat's mission is to remove high en-

ergy protons from the inner Van Allen Radiation Belt [41]. Energetic protons in the lower

Van Allen Belt occur naturally but can also be caused by nuclear detonations in the up-

per atmosphere. High energy protons damage satellites by causing single event upsets and

transistor charging. Single event upsets occur when protons impact a satellite's memory

storage devices and cause a bit to flip from a one to a zero or visa versa. A bit flip can

cause an entire section of code to malfunction, which can ultimately lead to the failure of

a satellite's avionics system. Transistor charging occurs when protons impact the silicon

surrounding a transistor. Over time, the charge builds up to a point where the transistor

can no longer flip from low to high rendering the transistor useless [25].

Energetic protons travel back and fourth along the Earth's magnetic field lines, bouncing

off the Earth's atmosphere at the points where the magnetic field lines intersect with the

Earth, once in the Northern and once in the Southern Hemisphere. TERSat will attempt to

remove these energetic protons by emitting Electromagnetic Ion Cyclotron (EMIC) waves,

which will coax the energetic protons to pass into Earth's atmosphere at one of the two

magnetic field line intersection points, rather than bouncing off the atmosphere and traveling

back into space [41]. In order to emit EMIC waves, TERSat will need a four kilometer long

antenna. To create this antenna, TERSat will release two tethers on opposite sides of

the satellite. Each tether will extend out two kilometers creating the required antenna.

Though the exact ADCS design has not been chosen, TERSat's primary structure will

require three axis stabilization in order to align the tethers in the correct orientation for

ejection. TERSat will likely use sun sensors in combination with a three axis magnetometer

and three axis inertial measurement unit for primary body attitude estimation and three

orthogonal reaction wheels and magnetic torque devices for attitude control [41].



Once extended several hundred meters from the primary structure, each tether will

continue to deploy using gravity gradient force. However, during the initial phase of tether

deployment, the gravity gradient force is not sufficient to deploy the tethers. Therefore, a

short term ADCS system must be integrated into modules at the end of each tether. The

sensor suite in each module must be able to determine the module's attitude and position

with respect to the primary structure. The module will likely use cold gas thrusters to

correctly position itself with respect to the primary structure, and deploy itself until the

gravity gradient force is sufficient to continue tether deployment. TERSat will be the first

ESPA class satellite to attempt tether deployment on the kilometer scale. If successful,

TERSat will not only help remove satellite debilitating high energy protons from the Van

Allen Belts, but it will also create a foundation for future complex ADCS systems in small

satellites [41].

2.3 Satellite ADCS Failures

Satellite ADCS systems are often complex combinations of hardware components and soft-

ware algorithms, and their flawless operation is a requirement for mission success. As can

be expected with such complex systems, there are many examples of satellite ADCS systems

failing either partially or completely once on orbit. Below are several examples of on-orbit

ADCS failures for satellites of all sizes. They are listed in chronological order.

The first American satellite, known as Explorer I, was designed and built by the Jet

Propulsion Laboratory (JPL) in Pasadena, CA and launched in January, 1958 [30]. Ex-

plorer I carried an instrument designed by James van Allen to measure the radiation en-

vironment in space [30]. Explorer I and James van Allen are famous for discovering the

high energy particle radiation belts now known as the Van Allen Belts [30]. Though a suc-

cessful mission overall, Explorer I suffered from a debilitating attitude control failure. The

satellite was permanently fixed to the rocket's fourth stage, which was spun during launch

to provide stability and even out any thrust imbalances in the engine [301. The satellite

also had four whip antennas mounted symmetrically about the spinning axis [30]. Once in

orbit, the uncontrolled spinning satellite (and fourth stage) began to experience periodic

communication loss [30]. This was eventually determined to be caused by the satellite's

spin axis moving from the long, minimum inertia axis to the transverse, maximum inertia



axis [30]. Spinning satellites tend towards their minimum energy states, which is rotation

about the axis of maximum inertia [30]. Spinning about the minimum inertia axis is an

unstable equilibrium, and any source of energy loss will allow the satellite to change its

rotation axis. Flexing in Explorer I's four whip antennas provided the energy loss necessary

to transfer from the unstable minimum inertia axis to the stable maximum inertia axis,

which led to periods of loss in communication due to incorrectly oriented antennas [301.

In November, 1986 The Polar Beacon Experiment and Auroral Research (Polar BEAR)

spacecraft built by the Naval Research Laboratory was launched to measure auroral and

ionospheric effects on radio frequency wave propagation [29]. The satellite was gravity

gradient stabilized using a boom and end mass in combination with a pitch axis flywheel [29].

Due to solar heating of the boom, the satellite began to sway back and forth away from

the gravity gradient orientation. Eventually, the satellite flipped over and stabilized in the

inverted orientation [291. The satellite operations team was eventually able to re-invert the

satellite by allowing the momentum wheel to slowly spin down and then quickly spin up,

producing enough angular rate to overcome the gravity gradient torque [29].

The Magellan spacecraft was deployed by the Space Shuttle in May, 1990 [30]. Magel-

lan's mission was to travel to and map the surface of Venus. After achieving orbit around

Venus and beginning the process of mapping Venus' surface using its synthetic-aperture

radar, Magellan began to experience spontaneous increases in attitude error and angular

rate about the spacecraft's body fixed x axis [30]. Engineers determined the problem to

be in the solar panel pointing control loop [301. When the solar panels were near their

commanded angular orientation, the step size of the solar panel actuator was greater than

the angular error between the estimated and commanded solar panel orientation [30]. This

caused the solar panels to flip back and forth on either side of their commanded orienta-

tion [30]. The solar panel jitter excited a seven Hertz oscillation mode in the panels that

led to the x axis attitude error [30]. Engineers were able to stabilize Magellan by adjusting

the solar panel control algorithm [30].

The TOPEX-Poseidon satellite was designed in cooperation between the United States

and France and launched in August, 1992 [30]. TOPEX-Poseidon's mission was to measure

the topography of Earth's oceans in order to determine current flows and investigate the

El Nino weather phenomenon [30]. TOPEX-Poseidon used two star trackers with thermo-

electric coolers in combination with several other sensors for attitude control [30]. In order



to prevent damage to the star trackers, mechanical shutters would close if bright objects

like the sun or moon moved to within twenty degrees of the star tracker's field of view [30].

After four months of operation, a single event upset caused the shutter control algorithm

in one of the star trackers to always assume the star tracker was pointed towards a bright

object and the shutter was closed [30]. Engineers reconfigured the control algorithm to use

the remaining star tracker, which was successful until April, 1998 [30]. After six years of

operation, degradation in the optical system caused an increase in background current. If

the shutter were to close due to a bright object, it would continue to 'see' a bright object re-

gardless of the shutter position, and it would not reopen [30]. Though engineers attempted

to predict when the sun or moon would pass too close to the star tracker's field of view and

maneuver the satellite to avoid such encounters, an unexpected reflection of the sun off of

the star tracker's baffle caused the shutter to permanently close [30]. Engineers were able to

save the satellite by rebooting, which cleared the single event upset in the first star tracker

[30]. Since it had only been used briefly, the recovered star tracker operated like new [30].

The Total Ozone Mapping Spectrometer satellite was developed by NASA's Goddard

Space Flight Center as part of its Earth Probe series, hence the name TOMS-EP [30].

TOMS-EP was launched in July, 1996 on-board a Pegasus rocket [30]. The satellite was

three axis stabilized with sun sensors, a magnetometer, and two Earth horizon sensors

for attitude estimation, and thrusters, magnetorquers, and reaction wheels for attitude

control [30]. Soon after launch, two of the sun sensors began providing erroneous measure-

ments and were found to be cross-wired from installation [30]. The problem was solved by

switching the two sensor outputs in the software algorithm [30]. After errors during magne-

torquer operations arose, the polarities of the magnetorquers were found to be inverted [30].

This problem was also mitigated by altering the software control algorithm [30].

The Lewis spacecraft was developed by NASA and launched from Vandenberg Air Force

Base on 23 August, 1997 [30]. The Lewis spacecraft was designed to make high-resolution

multi-spectral observations of the Earth from a 600 kilometer altitude [30]. After working

out several avionics issues in the first few days on orbit, Lewis was placed in a zero rotation

sun pointing safe mode [30]. Once in sun pointing mode, the operations crew retired for the

evening. Lewis used two rate gyroscopes to measure angular rotation about the axes per-

pendicular to the sun pointing axis and thrusters to control its attitude. While maintaining

its sun pointing orientation, a thruster imbalance induced a spin about Lewis' sun pointing



axis, which was unobserved by the gyroscopes in the other two axes [30]. Furthermore,

Lewis' solar panel face was the satellite's intermediate inertial axis, which may not be a

problem for a satellite with little to no angular rate. However, the spin induced by the

thruster imbalance was unstable about the intermediate axis [30]. By the time the satellite

operators returned, Lewis had precessed to a spin about its major axis of inertia, which

caused the solar panels to be edge on to the sun [301. The thrusters had depleted their fuel

while trying to recover the satellite and the batteries were nearly dead and not receiving

a charge [30]. Satellite operators permanently lost contact with Lewis on 26 August, 1997

just three days after launch [29].

The Tomographic Experiment using Radiative Recombinative Ionospheric Extreme ul-

traviolet and Radio Sources (TERRIERS) microsatellite was designed and built by Boston

University and launched in May, 1999 by a Pegasus launch vehicle [30]. After being placed

in a sun synchronous 550 kilometer orbit, the satellite could not face its solar panels towards

the sun, drained its batteries, and shut down [30]. Engineers determined the problem to

be a sign flip which inverted the polarity of one of the magnetorquers used for attitude

control, similar to the problem faced by NASA's TOMS-EP satellite [30]. Using a ground

engineering model, the operations team determined that the satellite could successfully re-

boot if the solar panel were to face the sun for a sufficient amount of time, and a software

patch could be uploaded to correct the sign error [30]. After months of contact attempts,

the operations team was never able to communicate with the TERRIERS satellite [30].

The Far Ultraviolet Spectroscopic Explorer (FUSE) spacecraft was designed and built

by NASA and launched in June, 1999 [29]. FUSE was used to make observations of distant

stars, galaxies, and other deep space objects [29]. The FUSE satellite used magnetic torque

coils and reaction wheels for attitude control [29]. In 2001, two of the four reaction wheels

failed, but engineers were able to reprogram the satellite's control algorithm to maintain

attitude control using the two remaining reaction wheels and the magnetic torque coils [29].

After one of the six rate gyroscopes failed in 2001 and the other five showing degradation,

engineers reprogrammed the satellite's attitude estimation algorithm to operate without

gyroscopes completely [29]. Though several ADCS components were lost on the FUSE

spacecraft, redundancy and clever engineering were able to extend the satellite's mission

life.



NASA's Imager for Magnetopause to Aurora Global Exploration (IMAGE) spacecraft

was launched from Vandenberg Air Force Base in March, 2000 [29]. The satellite was

designed to be spin stabilized using a single magnetic torque rod [29]. IMAGE also used a

passive ring nutation damper intended to remove any nutation due to external disturbances

on the spinning satellite [29]. However, after the satellite's initial nutation did not dampen

out as expected, engineers determined that the satellite's low spin rate of 0.5 RPM was not

high enough to overcome the surface tension of the liquid mercury in the nutation damper,

rendering the device useless at the commanded spin rate [29]. Satellite operators were able

to stabilize the satellite by uploading an open loop nutation damping control algorithm

using the magnetic torque rod [29].

The Thermosphere Ionosphere and Mesosphere Energetics and Dynamics (TIMED)

satellite was built by NASA and launched from Vandenberg Air Force Base in December,

2001 by a Delta II rocket [301. The TIMED satellite used magnetometers, star trackers, sun

sensors and an inertial measurement unit for attitude estimation and reaction wheels and

magnetorquers for attitude control [30]. In order to remove excess angular momentum in the

satellite after being released by the launch vehicle, engineers decided to do a rate damping

maneuver using the magnetorquers. However, measurements from the inertial measurement

unit were signaling an increase in angular momentum [30]. Engineers determined that this

was due to a sign error in the magnetorquers, again similar to the TOMS-EP and TERRI-

ERS satellites [30]. After fixing the sign error and stabilizing the satellite, engineers noticed

that TIMED was trying to point the wrong axis towards the sun [30]. After examining

several photos of the satellite before launch, they determined that two of the sun sensors

were mounted ninety degrees from their designed locations [30]. By reprogramming the

attitude estimation algorithm to account for the incorrectly located sun sensors, engineers

were able to stabilize the satellite and perform the mission [30].

FalconSat-3 was designed and built by the Astronautical Engineering Department at

the United States Air Force Academy. FalconSat-3 was launched in March, 2007 as a

secondary payload on-board an Atlas V from Cape Canaveral Air Force Station in Florida.

FalconSat-3 was designed to be a three axis stabilized satellite using a gravity gradient

boom to maintain Nadir pointing. For active attitude estimation, FalconSat-3 uses sun

sensors and magnetometers. For active attitude control, the satellite has three orthogonal

magnetic torque rods. After separation from the launch vehicle, FalconSat-3 was unable to



reduce stored angular momentum using the magnetic torque rods. This was believed to be

due to sign errors, which caused the polarity of the torque rods to be reversed. Though

the system's angular momentum had not been removed, the gravity gradient boom was

deployed, which reduced the satellite's angular rates, but did not change the system's stored

angular momentum. The problem was exacerbated by the sun sensors failing to operate due

to software interface errors leaving the magnetometers as the only attitude sensor. Though

not inverted, FalconSat-3 has yet to successfully remove excess angular momentum in the

system, and has large angle oscillations about the Nadir pointing attitude orientation.

As shown by the above examples, ADCS failures can occur at any step of the satellite

design process. Failures are due to insufficient modeling, incorrect construction, software

errors, component malfunctions and more. Though not all, at least some of the above

ADCS failure cases could have been identified and mitigated using devices like an ADCS

testbed during the satellite's testing phase. Though time and cost budgets may be limited,

increased testing of the ADCS system using devices like an air bearing could ultimately

save the mission.

2.4 State of ADCS Air Bearing Testbed Technology

There are two main categories of air bearings used to develop ADCS testbeds. These

categories include planar air bearings and rotational air bearings. Planar air bearings

operate using a flat, planar surface upon which objects float using compressed gas. Planar

air bearings allow for two translational degrees of freedom along the surface of the plane

as well as one rotational degree of freedom about the axis perpendicular to the plane. The

translational degrees of freedom are constrained by the dimensions of the plane, but the

rotational degree of freedom is unconstrained. Planar air bearings can also support multiple

devices simultaneously on the plane if space is available. Rotational air bearings operate

by floating a spherical object above a concave structure that matches the the geometry of

the sphere. Rotational air bearings also use compressed gas to float the spherical object

just above the surface of the concave support structure. Though constrained in all three

translational degrees of freedom, rotational air bearings provide three rotational degrees of

freedom. Angular constraints are a function of the specific geometry of the rotational air



bearing. Though complex, planar and rotational air bearings can be combined to provide

additional degrees of freedom for ADCS testing [49].

MIT's Space Systems Laboratory uses a planar air bearing for operating the SPHERES

ADCS testbed. The operating plane is approximately 1.5 meters by two meters and can

accommodate up to three SPHERES at once, which allows for formation flight testing

with two constrained translational degrees of freedom and one unconstrained rotational

degree of freedom for each SPHERE. The SPHERES satellites operate on the air bearing

by interfacing with an air carriage. Each air carriage can accommodate one SPHERE and

two compressed CO2 tanks, which provide the gas necessary to float the flat bottom of the

air carriage above the glass surface of the flat plane. Using the planar air bearing, engineers

can develop ADCS algorithms that will eventually be tested using the three SPHERES

located on the ISS. The ISS provides the ultimate ADCS test platform since it allows for

all six degrees of freedom; three constrained translational degrees and three unconstrained

rotational degrees of freedom.

Though planar air bearings provide a useful test platform for multiple objects, rotational

air bearings often provide a better attitude determination and control test platform for a

free-flying satellite because they allow for motion in all three rotational degrees of freedom.

Two similar types of rotational air bearings are the tabletop and umbrella style air bearings,

shown in Figures 2-5(a) and 2-5(b) respectively. Both of these types of air bearings allow for

unconstrained rotation about the yaw axis and constrained rotation about the remaining

two axes. The difference between the two is that the umbrella style air bearing allows for

increased freedom of motion in the pitch and roll axes by mounting the component plate

above and out of the way of the rotating portion.
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(a) Tabletop Style Air Bearing (b) Umbrella Style Air Bearing

Figure 2-5: Tabletop and Umbrella Style Rotational Air Bearings [50]

Engineers at the Universidad Nacional Autonoma de Mexico (National Autonomous

University of Mexico) in Mexico City developed and operate a tabletop style rotational

air bearing for ADCS testing. The rotational air bearing can rotate up to fifty degrees

off nominal in both the pitch and roll axes and support up to eighty kilograms [45]. The

air bearing has three orthogonal reaction wheels for attitude control and three orthogonal

torque coils for reaction wheel desaturation or attitude control [45]. The testbed uses

inertial measurement units and built in-house sun and Earth sensors for attitude estimation.

Finally, the testbed communicates wirelessly with a nearby ground station computer for

reprogramming and data storage [45]. The air bearing has manual as well as automatic

center of mass adjustment devices used to reduce torque due to gravity on the system [45].

The Naval Postgraduate School in Monterey, California developed and operates a table-

top style rotational air bearing to test the Bifocal Relay Mirror Spacecraft (BRMS), which

was designed to redirect laser light from a given source to distant targets either on the Earth

or in space [35]. The BR.MS rotational air bearing testbed is capable of floating an 800 kilo-

gram mass with seventy pounds per square inch of air pressure and can rotate up to twenty

degrees off nominal in the pitch and roll axes [35]. For attitude estimation, the testbed

uses a three axis magnetometer, two inclinometers, a two axis sun sensor, and an inertial

measurement unit [35]. The testbed is controlled using three control moment gyroscopes

(CMGs) which operate by rotating a constant velocity wheel about an axis perpendicular
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to its axis of rotation [35]. Rotating the wheel creates a gyroscopic torque that can be used

to control the testbed's attitude. The air bearing testbed uses an automatic center of mass

adjustment system made up of three masses attached to orthogonal linear actuators [35].

The automatic CM adjustment system operates in real time during ADCS tests in order to

ensure the center of mass (CM) remains close to the center of rotation [35]. Figure 2-6(a)

shows a picture of the BRMS air bearing testbed.

(a) BRMS Testbed [35] (b) SimSat II Testbed [50]

Figure 2-6: Tabletop Style Air Bearing Examples

The Air Force Institute of Technology (AFIT) at Wright-Patterson Air Force Base, Ohio

developed and currently operates a tabletop style rotational air bearing satellite simulator

known as SimSat II [50]. The air bearing can rotate up to twenty degrees off nominal in

the pitch and roll axes and support up to 136 kilograms [50]. SimSat II uses a Northrop

Grumman LN-200 Fiber Optic Gyroscope Inertial Measurement Unit (IMU) as its only

attitude estimation device, and three orthogonally mounted reaction wheels for attitude

control [50]. An on-board Mini-Box PC serves as the air bearing's avionics processor, which

wirelessly communicates with a ground station desktop computer for programming and data

storage [50]. SimSat II uses manually placed counter-masses to move the system's center of

mass to the center of rotation [50]. Figure 2-6(b) shows a picture of the SimSat II ADCS

testbed.

A third type of rotational air bearing is the dumbbell style air bearing. The dumbbell

style air bearing provides unconstrained rotational motion about the vehicle's yaw axis just

like the tabletop and umbrella style air bearings. However, the dumbbell style air bearing

................ ...............



also provides unconstrained rotational motion about the vehicle's roll axis. Only the pitch

axis is constrained. Drawbacks to this style are that the air bearing requires two relatively

independent sections on either side of the rotating sphere that must be perfectly balanced

with each other and can only be connected via wires passing through the center of the

rotating sphere. Figure 2-7 shows the general design of a dumbbell style rotational air

bearing.

yaw

roll

pitch

Figure 2-7: Dumbbell Style Rotational Air Bearing [50]

Engineers at the University of Michigan developed and operate a dumbbell style rota-

tional air bearing testbed known as the Triaxial Attitude Control Testbed (TACT) [19].

Operating at seventy pounds per square inch of air pressure, the air bearing can support

up to 360 pounds and rotate up to forty-five degrees off nominal in the pitch axis, which is

the only constrained axis on the dumbbell style air bearing [19]. For attitude control, the

TACT air bearing is designed to use several types of actuators. Developers designed the air

bearing to accommodate reaction wheels, fans, or mass actuators [19]. Though fans obvi-

ously cannot be used in a space environment with no atmosphere, they can simulate torque

similar to that of thrusters acting on an actual satellite. The mass actuators would not

work in the space environment either, but on the air bearing, they can be manipulated to

move the center of gravity with respect to the center of rotation and produce gravitational

torques on the system that can be used for attitude control. Figure 2-8 shows a picture of

the TACT dumbbell style air bearing configured to use reaction wheels for attitude control.

Engineers at the Virginia Polytechnic Institute & State University have developed a

satellite ADCS test platform using two rotational air bearings; one tabletop style air bearing

and one dumbbell style air bearing [48]. The set of air bearings are known as the Distributed
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Figure 2-8: TACT Dumbbell Style Air Bearing [19]

Spacecraft Attitude Control System Simulator (DSACSS). The set of air bearings allow

test developers to test single satellite attitude control systems as well as multiple satellite

formation ADCS systems. Each air bearing is capable of supporting up to 300 pounds [48].

The tabletop air bearing can rotated up to five degrees off nominal in the constrained pitch

and roll axes, and the dumbbell air bearing can rotate up to thirty degrees off nominal in

the constrained pitch axis [48]. Both air bearings use three axis rate gyroscopes and three

axis linear accelerometers for attitude estimation [48]. For attitude control, each air bearing

is designed to use three orthogonal reaction wheels or a set of cold gas thrusters [48]. The

design team has also developed a single CMG that can be attached as a control device [48].

The center of mass adjustment system is made up of three masses mounted upon orthogonal

linear actuators [48]. Presently, the tabletop style air bearing is nearly complete, and the

dumbbell style air bearing is in the design phase. Figure 2-9 shows the completed tabletop

air bearing with the dumbbell air bearing base in the background.

Planar and rotational air bearings both provide useful testbeds depending on the re-

quirements of the test scenario, though both have limitations due to constraints on certain

degrees of freedom. Planar air bearings only provide one degree of rotational freedom, and

rotational air bearings provide no translational degrees of freedom. However, combining the

two air bearing styles can provide additional degrees of freedom that could not be achieved

using either air bearing style individually. NASA's Marshall Space Flight Center developed

a combined air bearing system using a rotational air bearing mounted upon a cylindrical
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Figure 2-9: DSACSS Air Bearing Set [48]

air cushioned lift. The lift is mounted on a planar air bearing system floating above a flat

floor [49]. The combined set of air bearings provide a 400 pound payload all six degrees of

translational and rotational freedom [49].

2.5 Testbed Design Requirements

The ADCS testbed developed as described by this thesis will be a rotational tabletop style

air bearing that will provide three rotational degrees of freedom with constraints in the pitch

and roll axes. The ADCS testbed based on the tabletop style air bearing must provide a

platform for testing small satellite attitude determination and control systems in a university

environment. Because the testbed will operate within MIT's Space Systems Laboratory,

the testbed must meet the needs of student groups studying and applying control theory in

addition to specific ADCS tests required by satellite design teams. The following bullet list

outlines the four key air bearing design requirements.

e Class Project Support - MIT's Aeronautical and Astronautical engineering depart-

ment uses hands on tools to accompany estimation and control theory taught in the

classroom. The testbed must have the required software and hardware to produce a
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functional closed loop ADCS system as well as allow for high level operation to support

projects developed by students with minimal estimation and control background.

" ADCS Component Testing - The testbed must be able to integrate individual ADCS

hardware components for testing. The testbed must have hardware mounting capa-

bility and software integration capability for a variety of components, whether they

are attitude determination sensors or attitude control actuators. The testbed must be

able to power these components, communicate with them, and provide a closed loop

ADCS system for these components to operate within.

" ADCS Algorithm Testing - The testbed must be able to incorporate a variety of

software estimation and control algorithms. The testbed avionics system must be

versatile enough to accommodate estimation and control algorithms developed for

specific satellite projects in the lab or for classroom projects. The hardware sensors on

the testbed must be able to provide measurements for use by the estimation algorithm,

and the actuators must be able to provide control torques in response to control

algorithm commands.

" Integrated ADCS Testing - The testbed must be able to perform integrated ADCS

testing for specific satellite projects within the SSL. The testbed must be able to

incorporate hardware components simultaneously with software algorithms for inte-

grated ADCS testing. The testbed must provide wireless communication, electrical

power, processing capability, and any additional support required to allow for closed

loop ADCS testing.



Chapter 3

ADCS Testbed Model and

Simulation

A dynamic model and simulation are created as part of the three degree of freedom rotational

air bearing testbed. The simulation and integrated model allow the user to develop test

scenarios for the air bearing testbed and simulate hardware or software adaptations to the

air bearing. The simulation provides the user with a predicted response that allows the

user to determine if the desired test scenario is within the air bearing's capabilities and if

so, the simulated response can be used to validate the actual response of the air bearing

during testing as well as provide key details for results analysis after a test is carried out

on the air bearing.

This chapter focuses on the development of the air bearing model and simulation. First,

the primary coordinate systems used to define the motion of the air bearing are developed.

Using these coordinate systems, the equations of motion that define the dynamics of the

air bearing are derived. These equations include the dynamic effects introduced by the

integrated reaction wheels. From these equations, a simulation is created to model the

dynamics of the air bearing. The simulation can be modified by the user to match changes

in the physical air bearing. Modifications can be made to any module of the simulation

depending on the specific changes required. The simulation is developed in the MATLAB

Simulink environment. Each major module of the simulation is detailed to ensure a clear

understanding of the simulation as well as aid in modification.



3.1 Dynamic Air Bearing Model

The air bearing allows for three rotational degrees of freedom and constrains all three

translational degrees of freedom. Therefore, three equations of motion will be derived; one

for each rotational degree of freedom. The first step in deriving these equations is to define

the required three axis coordinate systems necessary to describe the system.

3.1.1 Coordinate Systems

The air bearing uses three primary coordinate systems. These include the fixed inertial

reference (FIR) coordinate system, the air bearing body fixed (ABBF) coordinate system,

and the reaction wheel coordinate system (RWCS). The first to be defined is the fixed

inertial reference coordinate system that is fixed with respect to the laboratory at all times.

Though the FIR coordinate system is assumed to be fixed in inertial space, the coordinate

system rotates once per day with respect to the Earth's fixed inertial frame due to the

laboratory's position on the surface of the Earth. The fixed inertial assumption introduces

error into the air bearing system that will be discussed in more detail in Section 5.1.1.

Figure 3-1: Air Bearing with Fixed Inertial Reference Coordinate System
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Figure 3-1 depicts the fixed inertial reference coordinate system with respect to the

green external equipment frame. The following are the defining characteristics of the fixed

inertial reference coordinate system.

" Fixed Inertial Reference Point of Origin - The fixed inertial reference point of

origin is located at the center of rotation of the air bearing.

* Xref Axis - The Xef axis is perpendicular the gravity vector and points away from

the wall and toward the viewer as seen in Figure 3-1.

* Yref Axis - The Yref axis is perpendicular to the gravity vector and points to the

right from the perspective of the viewer in Figure 3-1.

" Zref Axis - The Zref axis is the cross product of the Xef axis with the Yef axis and

completes the three axis right handed coordinate system.

The second coordinate system to be defined is the air bearing body fixed coordinate

system. This coordinate system remains fixed with respect to the air bearing as it rotates

through the FIR frame. The mass properties of the air bearing remain constant in a body

fixed coordinate system and the principle axes of the air bearing are aligned with this

coordinate system. Figure 3-2 depicts the ABBF coordinate system with respect to the

air bearing. The ABBF coordinate system is represented in black. The following are the

defining characteristics of the ABBF coordinate system.

* Air Bearing Body Fixed Point of Origin - The air bearing body fixed point of

origin is located at the center of rotation of the air bearing.

" xbody Axis - The Xbody axis is in the plane of the base plate of the air bearing and

extends out towards the component mounting plate holding the avionics processor.

* Ybody Axis - The Ybody axis is also in the plane of the base plate of the air bearing

and is perpendicular to the Xbody axis.

" Zbody Axis - The Zbody axis is the cross product of the Xbody axis with the Ybody

axis and completes the three axis right handed coordinate system. The Zbody axis is

perpendicular to the base plate of the air bearing and extends upward opposite of the

hemisphere mounted beneath the base plate.



Figure 3-2: Air Bearing with Air Bearing Body Fixed and Reaction Wheel Coordinate
Systems

The third coordinate system to be defined is the reaction wheel coordinate system. The

three orthogonal reaction wheels are mounted symmetrically about the Zbody axis in order

to maintain air bearing symmetry while providing the ability to test the common three

reaction wheel attitude control system used in many satellites as discussed in Section 2.2.

The reaction wheel coordinate system is fixed to the air bearing body similarly to the

ABBF coordinate system; however, the reaction wheel coordinate system is aligned with

the rotation axes of the three orthogonal reaction wheels. The reaction wheel coordinate

system is shown in Figure 3-2, and is represented in red. The following are the defining

characteristics of the reaction wheel coordinate system.
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* Reaction Wheel Point of Origin - The reaction wheel point of origin is located on

the negative zood axis below the air bearing's point of rotation. The origin is placed

at the intersection of the three vectors that are coincident with each reaction wheel's

rotation axis. Reference Figure 3-2 for clarity.

e xRW Axis - The XRW axis is coincident with reaction wheel one's rotation axis.

e yRW Axis - The yRW axis is coincident with reaction wheel two's rotation axis.

e zRW Axis - The ZRW axis is coincident with reaction wheel three's rotation axis.

The ZRW axis is also the cross product of the XRW axis with the YRW axis, which

completes the three axis right handed coordinate system.

3.1.2 Equations of Motion

The air bearing can move in all three rotational degrees of freedom. Therefore, three

rotational equations of motion must be derived to completely define the motion of the air

bearing. The three equations of motion will be derived in the ABBF coordinate system

described in Section 3.1.1 because the mass properties of the air bearing are constant in

this frame. For simplicity, the equations will be derived in vector form. Equation 3.1 is the

angular representation of Newton's second law of motion, which states that a mass subject

to a force undergoes an acceleration. In this case, a mass, represented by its second moment

of inertia I, subject to a torque undergoes an angular acceleration, -l. The inertia times

the angular acceleration is also equal to the change in angular momentum, H [28].

Text = I =H (3.1)

The angular acceleration and angular momentum relationship given in Equation 3.1 is

assuming a fixed inertial reference frame. In order to represent the motion of the air bearing

in the ABBF coordinate system that moves with respect to the FIR coordinate system, the

additional cross product of the angular velocity vector CD with the angular momentum vector

H given in Equation 3.2 must be included [28].

Text = H + c x H (3.2)



The angular momentum vector H represents the total angular momentum of the air

bearing system. Because the air bearing uses reaction wheels for attitude control, it is

important to differentiate between the angular momentum of the air bearing itself and the

angular momentum of the reaction wheels. Equation 3.3 shows how the angular momentum

of the system is broken down [40].

Htotal= HAB + HRW (3.3)

Substituting Equation 3.3 in Equation 3.2 gives Equation 3.4. This equation differenti-

ates between the angular momentum of the air bearing and that of the reaction wheels. This

differentiation is an important step towards developing control laws that will manipulate

the angular velocity of the reaction wheels in order to achieve the desired angular velocity

of the air bearing while keeping the angular momentum of the system at a constant.

Text = HAB +5 'X HAB + HRW + x Hw (3.4)

As shown in Equation 3.1, change in angular momentum is equal to inertia times an-

gular acceleration. Making this substitution into Equation 3.4 gives Equation 3.5, which

represents the complete vector equation of rotational motion for the air bearing system. In

order to differentiate between the angular velocity of the air bearing w, and the angular

velocity of the reaction wheels, Q will be used for reaction wheel angular velocity.

Text = IAB + X IABW + DIRwn + c x DIRWG (3.5)

Equation 3.5 can be used to prove the important concept that reaction wheels are

simply angular momentum storage devices. They have the capability to transfer angular

momentum to and from the vehicle to which they are attached, in this case the air bearing.

However, they do not change the total angular momentum of the combined vehicle/reac-

tion wheel system. Equation 3.5 shows the only variable that can change the total angular

momentum of the system is the sum of external torques. As a reminder, external torques

can be intentional control torques like attitude thrusters and magnetic torque coils or un-

intentional disturbance torques like aerodynamic drag and solar pressure. If the sum of

external torques is assumed to be zero, the angular velocity of the reaction wheels f can be



manipulated to achieve the desired angular velocity of the air bearing w without changing

the total angular momentum of the system.

The constants in Equation 3.5 are the inertia matrices, IAB and IRW, and the direction

cosine matrix (DCM), D. The symbolic inertia matrix of the complete air bearing IAB

is given in Equation 3.6. The air bearing inertia matrix is given in the ABBF coordinate

system. This is the same coordinate system in which the equations of motion given in

Equation 3.5 are developed. Therefore, no rotation matrix is necessary to include the air

bearing inertia matrix in the equations of motion. As stated in Section 3.1.1, the ABBF

coordinate system is aligned with the principle axes of the air bearing, so the air bearing

inertia matrix is a diagonal matrix. The actual values will be determined using a SolidWorks

model of the air bearing and given in Section 4.1.1.

Izz 0 0

IAB = I oy 0 kg * m2  (3.6)
0 0 Izz

The reaction wheel inertia matrix IRw represents the inertia of the rotating portions of

the reaction wheels and is given symbolically in Equation 3.7. Numerical values are given

in Section 4.1.5. The rotating portions of the reaction wheel include the flywheel itself plus

the internal rotating portions of the motor. The reaction wheel inertia matrix is given in

the reaction wheel coordinate system. Since each of the three orthogonal reaction wheels

are aligned with one of the three axes of the reaction wheel coordinate system, the reaction

wheel inertia matrix is a diagonal matrix. The inertial value for each of the flywheels is the

same and is calculated using the mass and mechanical properties of the wheels. The inertial

value for each of the motors is taken from the manufacturer's specification sheet. A rotation

matrix is necessary to include the reaction wheel inertia matrix in the equations of motion

because the reaction wheel coordinate system is not aligned with the ABBF coordinate

system.

Ia 0 0
IRW = Iflywheel + Imotor 0 a 0 kg * m 2  (3.7)

0 0 Ia]



The final constant term D in Equation 3.5 represents the DCM between the reaction

wheel coordinate system and the ABBF coordinate system. A DCM is a three by three

rotation matrix that can be used to transform a three dimensional vector from one coordi-

nate system to another. In this case, the reaction wheels are aligned with a frame that is

rotated with respect to the frame used to define the equations of motion as described in Sec-

tion 3.1.1. In order to represent the angular velocity of each reaction wheel independently

of the others while still writing the equations of motion in the ABBF coordinate system,

the DCM between the two coordinate systems must be defined. Using the DCM in this way

will allow a desired air bearing angular velocity about any of its primary axes to be related

to an independent angular acceleration command for each of the three orthogonal reaction

wheels.

Before deriving the DCM from the reaction wheel coordinate system to the ABBF

coordinate system, the development of a general DCM is explained. Figure 3-3 depicts a

unit vector in the first axis 91 of a rotated coordinate system within the unrotated coordinate

system represented by the si 22 _i3 unit vectors.

3

X2

All

A 2

x,

Figure 3-3: First Rotated Axis in Unrotated Frame [6]

The value An is the component of the $1 unit vector in the i direction. A 12 is the

component of the 91 unit vector in the 22 direction, and A13 is the component of 91 in the

X3 direction. Because x1, 22, and J3 are orthogonal, the three components All, A12 , and

A 13 completely define the unit vector 91 in the 21 22 i 3 coordinate frame as is shown in

Equation 3.8 [6].



91 = A 117 1 + A 1 2 i 2 + A 1 3 ' 3

The second and third unit vectors, Q2 and Q3, aligned with the second and third axes of

the rotated coordinate frame respectively can be defined in the unrotated coordinate frame

in a similar fashion as shown in Equations 3.9 and 3.10.

Q2 = A 2 1-i' + A 22Z2 + A 232i3  (3.9)

93 = A 31±i + A 32X 2 + A 33 - 3  (3.10)

Placing Equations 3.8, 3.9, and 3.10 in matrix form gives Equation 3.11. A vector in

the ;1 x22 Js coordinate frame pre-multiplied by the matrix in Equation 3.11 gives the same

vector represented in the Qi 92 y3 coordinate frame. Therefore, the matrix is a rotation

matrix between the two coordinate frames.

91 A11 A12 A13  1I
y2 = A 21 A 22 A 23  2(3.11)

is- A31 A32 A33 J& 3J
As seen in Figure 3-3, Ani is the component of 91 projected in the i direction. This

projection is defined as the cosine of the angle between Di and &1 and is given in Equa-

tion 3.12 [54].

Al = cos BZ (3.12)

Using the relationship shown in Equation 3.12, all entries of the matrix given in Equa-

tion 3.11 are substituted to produce the DCM between the rotated and unrotated coordinate

systems. The DCM is given in Equation 3.13. The DCM can be used to rotate any vector

in the i &2 &3 coordinate frame to the Qi Y2 93 coordinate frame and vise versa using

the matrix transpose. However, in order to produce the DCM, all nine angles shown in

Equation 3.13 must be known.

(3.8)
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Figure 3-4: Reaction Wheel Frame in ABBF Frame

Figure 3-4 depicts the reaction wheel frame in the ABBF frame from several perspectives.

Figure 3-4(d) makes clear that the orthogonal reaction wheel frame is symmetric about the

Zbody axis, and that the zRW axis is in the negative Xbody direction from this perspective.

Using the information in the four subfigures of Figure 3-4, all nine required DCM angles

can be determined.

Because the reaction wheel frame is symmetric about the Zbody axis, a vector along

the Zbody axis is in the i1 1] direction in the reaction wheel frame. To find the angle

cos 913
cos k9i23

cos 93_3

(3.13)

Cos k--162

cos k02

XRW

XRW

Xbody

Zbody

YRW

Ybody

I ........... . ...... I-- I.. I-- --- - - - = - - I -- - - - - -- - - - --- - - - - -



between any of the reaction wheel frame axes and the zbIy axis (all three are the same),

use the definition of the vector dot product given in Equation 3.14 [54].

Ae B = |AI|BIcos 0 AB (3.14)

Using Equation 3.14, substitute A = 1 1 11 to represent a vector along the zb, axis

and B = 1 0 0] to represent a vector along the XRW axis (both given in the reaction

wheel frame). Solving this equation for 0 results in the angle OzbXR = 54.74*. Due to the

symmetry about the zb, axis, the angle between zbo,, and the remaining two reaction wheel

axes is also 54.74*. Using the dot product definition in a similar fashion, the remaining six

angles can be found. All nine angles are listed in Table 3.1.

Table 3.1: Angles Between RW Axes and ABBF Axes

Angle Between: Angle Label Magnitude (deg)
xy and XRW 03XR 65.90520

xzy and YRW 9 xbyR 65.90520
u,, and ZRW 0

XbzR 144.73560

ybd, and XRW 0
YbXR 135.00000

yb, and YRW 9
YbYR 45.00000

ybody and ZRW 9
ybzR 90.00000

zbJdy and XRW 0
ZbxR 54.7356*

zbdy and yRw 9
zby 54.73560

zb,dy and zRW 0
ZbZR 54.73560

Using the angles given in Table 3.1 and the general definition of a direction cosine matrix

given in Equation 3.13, the DCM used to rotate a vector from the reaction wheel frame to

the ABBF frame is given in Equation 3.15. The DCM is represented by D in the vector

equation of motion and is given in numeric form below because this matrix will be constant

regardless of software or hardware changes to the air bearing.

cos 65.91* cos 65.910

cos 135.000 cos 45.00*

cos 54.74* cos 54.740

cos 90.000

cos 54.740

0.40825 0.40825

-0.70711 0.70711

0.57735 0.57735

0.00000

0.57735

(3.15)



All constants in the vector rotational equation of motion given in Equation 3.5 are now

defined. The equation can now be used to model the motion of the combined air bearing,

reaction wheel system in the MATLAB simulation as well as be used to develop control

algorithms in the simulation and in the avionics code used on the physical testbed.

3.2 MATLAB Simulation

The supporting MATLAB simulation of the ADCS testbed provides several advantages over

operating the testbed without using a model. First of all, the testbed will likely need to

be modified either slightly or significantly in order to accommodate a given test campaign.

The simulation allows for those in charge of testing to determine the most efficient means of

testbed modification that meet the requirements of the test campaign. The modifications,

either hardware or software, can be integrated into the simulation first in order to predict

the response of the modified system to a given input. If the simulation predicts that the

modifications will meet requirements while remaining within the physical limitations of the

air bearing, the modifications can then be implemented in the hardware or software.

The simulation also provides an expanded testbed state estimate. The baseline testbed

uses a three axis inertial measurement unit and a three axis magnetometer as attitude

sensors and four encoders to measure the magnitudes of the four reaction wheels' angular

rates. These sensors provide a limited measurement of the testbed state. The simulation

can be used to predict unobservable states like testbed angular acceleration, reaction wheel

angular direction, reaction wheel electrical current and voltage, and the direction cosine

matrix between the FIR frame and the true ABBF frame.

Once updated to match the current physical testbed configuration, the simulation can

produce response plots to be compared with the measurable responses of the physical testbed

to a given input. Matching responses between the model and the physical testbed provides

supporting evidence so that the physical response is not unexplainable but rather an ex-

pected response based on vehicle dynamics. Furthermore, the additional state estimates

produced by the simulation provide insight into exactly what characteristics of the testbed

drive the response of the testbed. This information can be used to predict limitations of the

system being tested as well as provide designers with information on how to best modify

the system to meet requirements if the current configuration is found to be insufficient.



3.2.1 Simulation Development

The simulation is developed in the MATLAB Simulink environment. Simulink provides a

simulated continuous real-time environment for which to run a dynamic model with feed-

back. Rather than using written code, Simulink uses a block structure similar to a flow

chart. The block structure allows for easy to recognize loop organization and feedback

paths. The block structure also provides ease of modification in order to update the simula-

tion based on proposed testbed changes. Figure 3-5 is a screen-shot of the outer most layer

of the Simulink simulation. Though details are hard to see in this picture, the looped block

structure is clearly recognized. The block structure also allows for easy manipulation of the

simulation. Certain aspects like sensor measurements or disturbance torques can be turned

on and off simply by connecting or disconnecting an arrow in the Simulink environment.

Making such a change in line by line code would likely be more time consuming and less

obvious to recognize.

Figure 3-5: Simulation Screen-shot

Simulink has several advantages besides the block structure that make it the ideal plat-

form to build the ADCS testbed simulation. First, the simulated continuous time environ-

ment allows for accurate estimation of the dynamic response of the air bearing to a given

input. The physical air bearing responds to an input in continuous real time. Therefore, the

simulation is most accurate if it can model the air bearing dynamics as a continuous system

rather than a discrete system. Simulink also provides the ability to operate a model at dif-



ferent time steps within its environment. This is beneficial because it allows the simulation

not only to model the continuous dynamics of the physical air bearing, but also to model

the discrete attitude estimation and control algorithm running on the testbed's avionics

computer. The physical computer runs the estimation and control algorithm at a discrete

time step. The discrete nature of this process must be modeled in order to accurately pre-

dict the characteristics of the estimation and control algorithm. Using a continuous model

of the air bearing dynamics and a discrete model of the estimation and control algorithm

allows the simulation to provide the best estimate of the testbed state.

Among other useful tools, Simulink uses a color coding scheme to make clear which sec-

tions of the simulation are running in a given time step as can be seen in Figure 3-5. In this

case, the blocks and lines appearing in black represent the continuous portions of the simu-

lation like the air bearing plant and the angular momentum calculator. The blocks and lines

appearing in green represent the discrete portions, which include the sensors, estimator, and

controller. Yellow blocks represent subsystems containing blocks with different time steps,

and red blocks represent the discretized output of the continuous states within the model.

This discretization is necessary to create data arrays within the MATLAB environment,

but it should occur at a higher frequency than the discrete control algorithm to accurately

represent the continuous information. In general, discretization of continuous states should

occur at no less than ten times the frequency of the control algorithm to maintain accuracy.

Though the Simulink environment uses a block structure, MATLAB code in the form

of m files or embedded code can be called by any block within the simulation requiring

the functions of a given piece of MATLAB code. This feature is useful when a series of

mathematical operations are required that would be tedious to develop using the default

block structure. Furthermore, MATLAB m files can be called before beginning the real time

simulation to provide initial conditions used by the Simulink simulation. The simulation

can also send data arrays as variables to the MATLAB workspace for post analysis. This

feature allows the simulation to provide expanded testbed state estimation over the entire

test duration.

3.2.2 Plant Module

The simulation plant module consists of the devices on the air bearing that undergo physical

motion during a test. These include the three orthogonal reaction wheels and the air bearing



itself. The plant module is the only module operated in a continuous environment in the

simulation in order to best model the actual motion of the reaction wheels and air bearing.

The reaction wheel section comes first in the plant module because the reaction wheels

receive commands from the control algorithm to achieve a commanded angular velocity.

The reaction wheel angular velocity is the input into the air bearing section, since the

torque due to the change in reaction wheel angular velocity is what drives motion in the air

bearing.

3.2.2.1 Reaction Wheel Plant Block

The Pololu Trex motor controllers on the air bearing drive the reaction wheels by com-

manding a voltage. In order to accurately simulate this, the reaction wheel block receives

three voltage inputs from the motor controller block within the control module. Each volt-

age input corresponds to each of the three reaction wheels. The simulated reaction wheel

response can be found by applying the voltage input to the reaction wheel equations of

motion. However, the reaction wheel equations of motion must be developed before they

can be used. Figure 3-6 shows the simplified electrical representation of a direct current

motor, which is the type of motor used for the reaction wheels.

R L I

V Vc

J

Figure 3-6: Electrical Diagram of Direct Current (DC) Motor [16]

Equation 3.16 gives Kirchoff's voltage law applied to the reaction wheel system. Kir-

choff's voltage law states that the sum of all voltages around a loop must equal zero. V is the

source voltage from the motor controller. The other voltages are defined in Equations 3.17

through 3.19 [16].



V -VR - VL -Vc = 0

VR=i*R

VL =i *L

Vc = Ke * Q

(3.16)

(3.17)

(3.18)

(3.19)

Substituting the above equations into Kirchoff's voltage law gives Equation 3.20, which

is the dynamic equation representing the electrical characteristics of the reaction wheel.

The equation is solved for i.

- Ke R. V
L L L

(3.20)

The equation representing the mechanical characteristics of the reaction wheel begin

with Newton's second law for rotational bodies given in Equation 3.21, which states that

the sum of torques on the system equals the inertia of the system times the system's angular

acceleration. T and To are defined in Equations 3.22 and 3.23 [16].

T - T = J (3.21)

Te - Kt * i (3.22)

Th = b* 7 (3.23)

Substituting the torque equations into Newton's second law gives Equation 3.24, which

is the dynamic equation representing the mechanical characteristics of the reaction wheel.

The equation is solved for . The electrical and mechanical dynamic equations can be

combined to model the motion of the three reaction wheels on the air bearing given voltage

inputs from the motor controllers.



A = + -i (3.24)
J J

The constants in the electrical and mechanical dynamic equations are unique to each

motor. Table 3.2 lists each constant and its value as given in the data sheet provided by

the manufacturer, Motion Control Group. The specification sheet can be found at Motion

Control Group's website. 1 The exceptions are the inertia J which is the sum of the motor

inertia as listed in the the data sheet and the inertia of the attached fly wheel, and the

damping ratio b which is empirically determined. The damping ratio is different than the

value listed in the data sheet because of the attached fly wheel.

Table 3.2: Reaction Wheel Motor Constants

Constant Name Value Units
J Inertia 0.00725 kg * m2

Ke Voltage Constant 0.071 V/rad/sec
Kt Torque Constant 0.070 Nm/A
b Damping Ratio 0.000178 Nm/rad/sec

L Inductance 0.00339 H
R Resistance 1.52 Q

Figure 3-7 shows the actual Simulink diagram representing the two reaction wheel equa-

tions of motion. The top portion is the block representation of the electrical characteristics

of the wheels, and the bottom portion is the block representation of the mechanical char-

acteristics of the wheels. The equations are coupled, which is why the integrated outputs

are fed back to each other. Though the diagram only shows one set of equations, a three

vector of voltages are provided at the input, and the model calculates the angular velocity

of all three wheels simultaneously. The output is a three vector containing three reaction

wheel velocities. The reaction wheel block is the first to be modeled in a continuous fashion.

The voltage input is provided at the frequency of the control algorithm, and the input is

modified to provide a continuous input to the reaction wheel equations of motion. The

modification is done by the Rate Transition block in Figure 3-7.

lhttp: //www. ametektip . com/index. php?option=com\_catalog\&amp;view=models&amp ;which=
catalogs\&amp; id=399\&amp; Itemid=107\&amp; lang=en



Figure 3-7: Reaction Wheel Plant Simulink Diagram

3.2.2.2 Air Bearing Plant Block

The vector equation of motion for the air bearing is developed in Section 3.1.2 and given

in Equation 3.5. However, to be applied correctly, the equation must be solved for the

desired output, which is the angular acceleration of the air bearing Ct. For the baseline

testbed, the reaction wheels are the only source of torque on the air bearing, and they

do not provide external torques. There are also assumed to be no external disturbance

torques on the system. Therefore, the left side of Equation 3.5 will be set to zero. The

manipulated equation is given in Equation 3.25. If torque coils or thrusters are added for

attitude control, their torques will be included in the external torque variable on the left

side of Equation 3.5, and the below equation will have an additional term.



' = Ij[- (c' x IABW) -DIRWQ- (c x DIRwn)

Figure 3-8 shows the Simulink block diagram of Equation 3.25. The input is the three

vector of reaction wheel angular velocities Q, and the derivative of the reaction wheel angular

velocity vector, which is the reaction wheel angular acceleration vector Q. The integrated

output, which is the three vector of air bearing angular velocities C is fed back into the

equation. The air bearing block is modeled in a continuous fashion similar to the reaction

wheel block in order to best simulate the physical air bearing motion. The desired outputs

are air bearing angular velocity and its integral, air bearing angular orientation. These

outputs represent the simulated true attitude state of the air bearing.

to, truepsto

DCM 8BOD'r art RW (U

Multiply mugatraty

Figure 3-8: Air Bearing Plant Simulink Diagram

In the top right corner of Figure 3-8 is located the block calculating the DCM from the

FIR frame to the air bearing's current angular orientation as defined by the true ABBF

frame. The DCM is necessary to provide estimated attitude measurements similar to those

provided by the IMU's accelerometers and the magnetometer. Since these measurement

devices are used on the air bearing, they must be modeled in the simulation. As previously

described, the DCM is a three by three matrix that can transform a vector in this case

.................. -.. ......... .......... ........... ...

(3.25)



from the FIR frame to the ABBF frame and visa versa. Equation 3.26 gives the means to

discretely calculate the DCM using the air bearing's state [22].

DCMk+l kew(Ck*dt) * DCMk (3.26)

Figure 3-9 gives the Simulink diagram located within the DCM block that calculates the

true DCM from the FIR frame to the ABBF frame. The diagram is a block representation

of Equation 3.26. Due to the high computational requirement of a matrix exponential, this

block operates at the discrete time step. Operating at the discrete time step introduces some

amount of error in the system, though the benefit of simulation runtime speed outweighs

the cost of introduced error.

omega delta pos MATL MATLAB
Function Furction M atrix

rate - utpf
Zero-Order kxpmt DC ue

Hold

1

Unit Delay

Figure 3-9: Direction Cosine Matrix Simulink Diagram

The true air bearing angular orientation and rate as well as the DCM from the FIR

frame to the ABBF frame are the primary outputs of the plant module. These outputs feed

into the sensor portion of the estimation module to provide a simulated state measurement

and are used to test the accuracy of the estimation algorithm. The true state is also the

most beneficial output to be used in comparison with actual estimated state data collected

from various tests on the air bearing.

3.2.3 Estimation Module

The purpose of the simulation estimation block is to produce the best estimate of the air

bearing's state. The estimation block first uses inputs from the control law in order to

propagate a linear state space model of the reaction wheels and air bearing. The estimation

block also takes inputs from sensors on-board the air bearing and uses the measurements to

update the linear model. The combination of propagating the linear model and updating

.................. -....................... ... ..........



the output of the model based on sensor measurements produces the best estimate of the

air bearing's angular rate and orientation. This type of estimation process is commonly

known as an Extended Kalman Filter (EKF).

3.2.3.1 Reaction Wheel State Space Block

The input to the reaction wheel state space block is the same as the input to the reaction

wheel plant block, which is the three vector of commanded voltages. Ideally, the reaction

wheel angular velocities would not need to be estimated since there are encoders located

on each of the wheels. These encoders could provide reaction wheel angular velocity mea-

surements that could be fed directly into the air bearing state space model. However, due

to computational limitations on the Arduino processors used on the air bearing, only one

encoder input from each reaction wheel can be processed. The single encoder input allows

for the magnitude of the reaction wheel angular velocity to be measured, but not direction.

Without direction, the measurement is insufficient as an input to the air bearing state space

model. Therefore, the reaction wheel angular velocities must be estimated using the voltage

inputs from the control law, which are available on the actual air bearing.

The reaction wheel equations of motion developed in Section 3.2.2 must be manipulated

into a state space model for use in the estimation block. Equations 3.27 and 3.28 below

represent the general continuous state space equations. The variable x represents the state

of the system being modeled, and u represents the inputs to the system. The matrix A is the

state matrix used to calculate the derivative of the state, which can be used to determine

the state at a future point in time. The matrix B is the input matrix used to correctly

scale and apply the inputs to the correct states. The matrix C is the output matrix used

to correctly scale and determine observability of the states [39].

xk= Ax + Bu (3.27)

y = CX (3.28)

From Equations 3.20 and 3.24 and the fact that there are three reaction wheels, the

state vector x, is given in Equation 3.29. The derivative of the state vector consists of the



derivatives of each of the components of the state vector. The input vector Urw consists of

the three voltages and is given below in Equation 3.30.

Xrw = Z (3.29)
'lx

jy

Urw VY (3.30)

The state matrix and input matrix must be formed so that each row of the matrices

reproduces one of the dynamic equations of motion for each of the three reaction wheels.

Because there are two dynamic equations of motion for each wheel and three wheels, there

are six rows in the state and input matrices. Fortunately, the reaction wheel dynamic

equations are linear so they can be directly converted to a state space model without being

linearized. This allows for a more accurate model of the reaction wheel system and reduces

the error induced by having to estimate the reaction wheel angular velocities instead of

using direct measurements from the encoders. Equation 3.31 gives the state matrix Arw as

a function of the components of the electrical and mechanical dynamic equations.

-j 0 0 Kt 0 0

0 -b 0 0 Kt 0

0 0 - 0 0
Arw = (3.31)

- 0 0 -L 0 0

0 -- K 0 0 -R 0

0 0 - 0 0 RLL L -

Equation 3.32 gives the input matrix Br as a function of the components of the electrical

dynamic equation. The mechanical dynamic equation is not a function of the voltage input.



Therefore, the input matrix does not apply the voltage input to the mechanical portion of

the state.

Br = (3.32)

The desired outputs of the state space model are the angular velocities of the three

reaction wheels. These values are just a portion of the full state, so the output matrix Cw

is constructed to pull just these values from the full state. Equation 3.33 gives the output

matrix of the reaction wheel state space model.

Crw K
0

0 0

1 0

0 1

(3.33)

Substituting the populated state, input, and output matrices into the general state

space equations gives the complete continuous reaction wheel state space model shown in

Equations 3.34 and 3.35.
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2 1 0 0 0 0 01
1 = 0 1 0 0 0 0 (3.35)

Q2 0 0 1 0 0 0

iZ

The above equations represent the continuous state space model of the reaction wheels.

In order to be coded as part of the estimator on the air bearing, the model must be converted

from a continuous to a discrete model. Therefore, the simulated model must be discrete

as well. Equations 3.36 and 3.37 represent the general discrete state space equations [42].

Rather than calculating the derivative of the state like the continuous state space equations,

the discrete equations calculate the state at the next time step.

Xk-1 = Adxk + BdUk (3.36)

yA = CXk (3.37)

As seen in the above discrete state space equations, the new matrices needed to apply

these equations are the state matrix Ad and the input matrix Bd. These can both be

calculated using the continuous state and input matrices along with the discretization time

step. Equation 3.38 shows how to calculate the discrete state matrix [42].

Ad = eA*dt (3.38)

If the continuous state matrix A is nonsingular and the inverse can be determined,

Equation 3.39 shows the quick method for calculating the discrete input matrix. However,

if the state matrix does not have an inverse, convolution is necessary to find the discrete

input matrix as shown in Equation 3.40 [42].

Bd = A-'(Ad - I)B (3.39)



dt

Bd = e A*Td-r * B (3.40)

0

Because the matrix exponential used to calculate the discrete matrices is complex, the

discrete matrices cannot be given in symbolic form. However, Equations 3.41 and 3.42 give

the discrete state space equations for the three reaction wheels without expanding the state

and input matrices. Note that there is no difference in the output equation between the

continuous and discrete state space models. These equations will be directly coded into the

Simulink simulation as the reaction wheel angular velocity estimator.

= Ad rw Z + Bdrw Vy (3.41)

-VZlk
L zJk±1 L zJk

QX 1 0 0 0 0 0

Y 0 1 0 0 0 0 (3.42)
z k L0 0 1 0 0 0

. iz - k

Figure 3-10 shows the above equations transformed into the Simulink block diagram

format. The voltage vector is the input and the reaction wheel angular velocity vector is

the output. The model runs at the discrete time step to best simulate the same process

on the air bearing processors. The angular velocity vector is immediately differentiated in

order to produce the required input to the air bearing state space model, which is the three

vector of reaction wheel angular accelerations.
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Figure 3-10: Reaction Wheel Discrete State Space Diagram

3.2.3.2 Air Bearing State Space Block

Just as with the reaction wheel equations of motion, the air bearing vector equation of

motion must be manipulated into a state space model. However, the air bearing equation

of motion will not be as simple as the reaction wheel equations because the air bearing

equation is nonlinear. Several steps are required before the equation can be placed within

a state space model. First, the equation must be expanded from the vector form given in

Equation 3.25 to scalar form. Equations 3.43, 3.44, and 3.45 give the respective ABBF x, y,

and z axis scalar equations of motion expanded from the vector form given in Equation 3.25.

1-
bz = I [Iyywywz -Izzwzwy -Ia(Di1Ax+D 1 2 ±y+D13Az)-+zIa(D 21Qx+D 2 2Qy+D 23Qz)

- WyIa(D31Qx + D 32 Qy + D 3 3Qz)] (3.43)

-, = Izzozox -Izwzwz -- la(D21Nfx+D22Ay+D 2 3 A2z)+ xIa(D 31 Qx+D 3 2Qy+D 3 3Qz)
+y

WzIa(D110x + D1 2Qy + D13Qz)] (3.44)
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W2 = - [ixxwy -Iyywwx -Ia(D31Ax+D32Ay+D 3 3A z) +WyIa(D110x+D12Qy+D13 Qz)

- wxIa(D 2 10x + D 22 Qy + D23Dz)1 (3.45)

The next step is to linearize the scalar equations. To linearize an equation, the partial

derivative must be taken with respect to each variable within the equation. The partials

are then evaluated at an equilibrium point chosen to be at or near where the actual system

is expected to be operating. The remaining coefficient of each evaluated partial derivative

is then multiplied by the variable by which the partial derivative is taken to produce the

linear component for each variable. The resulting equation is a function of linear compo-

nents for each original variable. For example, Equation 3.47 shows the general process for

producing the linearized function g(m, n, h) from the nonlinear function f(m, n, h) about

the equilibrium points given in Equation 3.46 [21].

meq

eq vec = neq (3.46)

[heq j

Of Of Of
g(m, n, h) = m + n + - h (3.47)

Om eq vec On eq vec Oh eq vec

The linearization process will be shown for the scalar equation of motion about the

ABBF x axis and omitted for the other two equations since they follow a similar process.

The final linearized equations will be given for all three equations of motion. Equation 3.49

gives the symbolic equation of motion for the ABBF x axis linearized about the equilibrium

points given in Equation 3.48.
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The nine partial differentials given in the above equation must now be calculated. Equa-

tions 3.50 through 3.52 give the partial derivatives of c.jx with respect to the air bearing

angular velocities about the three ABBF axes.

(3.50)
awx

6_ 1-di 
1- =-Iyyoz - Iz

Wo Ix X

--- = IIyyWY - IzO9wz IXX

Equations 3.53 through 3.55 give th

velocities of the three reaction wheels.

ZWZ - Ia(D 31lx + D 32 Qy + D 33(z)] (3.51)

zwy + Ia(D 2 10x + D 22 Qy + D 23 Qz)] (3.52)

e partial derivatives of c, with respect to the angular

au0 1
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OQX Izz
(3.53)



-K- - zIaD22 - WyIaD 32  (3.54)
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Equations 3.56 through 3.58 give the partial derivatives of CZ; with respect to the angular

accelerations of the three reaction wheels.

-- x = a-(3.56)

802X IXX

80DX IaD12
9.- = - i(3.57)

6UX IaD13-- = a - (3.58)

Using these partial derivatives, the linearized equation of motion can be found about

any set of equilibrium points. However, in order to simplify the linearized equations, the

equilibrium points for the air bearing are all chosen to be zero. Not only does this choice

simplify the linearized equations, but it also provides the best estimate of the air bearing's

state in most cases. Though the air bearing may assume angular rates during a test, and the

reaction wheels most certainly will assume some angular rate, these rates vary significantly

above and below zero during most tests. Even if the initial velocity of the reaction wheels

is a positive value, their velocity will likely reduce or switch directions during a test. If

the model were linearized about the initial velocity, it would be less accurate once the

wheels change direction. If the model is linearized about zero, the model is equally accurate

regardless of reaction wheel direction. This argument is the same for air bearing body rates.

Equation 3.59 gives the evaluated equation of motion for the ABBF x axis linearized about

all zero equilibrium points.

x in +F D112x + D 1 2 Ay + D13Az] (3.59)
IXX

Equations 3.60 and 3.61 give the evaluated equations of motion for the ABBF y and z

axes linearized about all zero equilibrium points respectively.
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IYY
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A state space model can now be defined using the above equations of motion. The state

space model can be defined in many ways, but the most straightforward and beneficial

definition in this case is to define the state vector as the three angular orientations with

respect to the ABBF frame and the three angular rates with respect to the ABBF frame

since these are the desired outputs of the model. The three reaction wheel angular acceler-

ations will make up the input vector. Equation 3.62 gives the air bearing state vector and

Equation 3.63 gives the air bearing input vector.

Ox

GY

X = 02 (3.62)

WY

Wz

'ab A] (3.63)

The state matrix that is derived from the above state vector and the three linearized

equations of motion is given below in Equation 3.64. The matrix is sparse because the

linearized equations of motion are not a function of the state. The only nonzero components

in the state matrix equate the derivative of the three angular orientations to their respective

angular rates, since these values are equal. Otherwise, the current state has no effect on

the propagation of the state.



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
Aab = (3.64)

0 0 0 0 0 0

0 0 0 0 0 0

0O 0 0 0 0 0-

The input matrix derived from the input vector and the linearized equations of motion

is given below in Equation 3.65. The upper half of the input matrix is zero because the

three angular orientations are not driven by the reaction wheel accelerations. The lower half

of the input matrix is populated because the linearized equations of motion are functions

of the reaction wheel angular accelerations.

0 0 0

0 0 0

0 0 0
Bab = _r.aD11 _ I.D12 _IaD13 (3.65)

Izz I.. I..
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All six states are desired outputs of the state space model so the output matrix is simply

a six by six identity matrix given in Equation 3.66.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
Cab = (3.66)

0 0 0 1 0 0

0 0 0 0 1 0

-0 0 0 0 0 1-

Using the state, input, and output matrices, the complete continuous state space model

of the air bearing can be constructed. Equation 3.67 gives the air bearing state equation

and Equation 3.68 gives the air bearing output equation. Again, this model is based on the

linearized equations of motion about an equilibrium point of zero for all states and inputs.
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The above continuous state space model must now be transformed to a discrete state

space model. This is done in the same fashion as the reaction wheel model using Equa-

tion 3.38 for the discrete state matrix. The continuous state matrix is clearly not invertible

so the convolution equation is necessary to find the input matrix. This equation is listed in

Equation 3.40. The discrete air bearing state space model can now be defined using the dis-

crete state and input matrices. The discrete state equation is given below in Equation 3.69.

The discrete output equation is the same as the continuous output equation given above.

The discrete state and input matrices are not expanded due to the complexity introduced

by the matrix exponential used to calculate them.

Ox Ox

OY 0Y

Oz =Aab Oz + Bdab o (3.69)
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WY WY +1z- k

LWz- k+1 -wzj k



Figure 3-11 shows the above discrete state space model of the air bearing transformed

into a Simulink block diagram. As with the reaction wheel model, this model runs at the

discrete time step. The model is constructed slightly differently than the reaction wheel

model seen in Figure 3-10 because this model is the propagation step in the Kalman Filter,

which will be explained in the Extended Kalman Filter Block section below. The output

matrix is also not used in this diagram because the matrix is identity and therefore not

necessary.
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Figure 3-11: Air Bearing Discrete State Space Diagram

3.2.3.3 Measurement Blocks

The state space model of the system is one of two sets of inputs to the Kalman Filter. The

other is the measurement vector, which is produced by creating simulated measurements

of the true state as provided by the air bearing plant block. The measurement devices

on the air bearing are an IMU which provides three axis rate measurements and three axis

linear accelerometer measurements used to measure the gravity vector, and a magnetometer

that provides three axis magnetic field measurements. The first measurement device to be

covered is the magnetometer.

The first step to producing a simulated magnetometer measurement is knowing the

magnetic field in the FIR frame. On the actual air bearing, this vector is measured by the

magnetometer while it is co-aligned with the FIR frame at the beginning of each test. The

measurement is then stored and used as the reference vector for the remainder of the test. In

the simulation, the reference magnetic field vector is defined in the initial conditions section

of the test-init.m file, which runs at the beginning of each simulation. The magnetic field

... . ............ .. .......... ...... ........... ...... ... I .......... -.............. .... .... .....



vector is measured in units of counts by the magnetometer. The counts can be converted

to micro-Tesla using a conversion factor given in the magnetometer's data sheet.

The magnetic field vector in the FIR frame is pre-multiplied by the DCM from the

FIR frame to the ABBF frame at each time step. The DCM from the FIR frame to the

ABBF frame is calculated in the air bearing plant block as explained in Section 3.2.2. This

multiplication produces the true magnetic field in the ABBF frame at the given time step.

Random white noise with a mean of zero and an empirically determined variance is added

to each component of the true magnetic field vector to produce the measured magnetic

field vector at the given time step. The variance of the noise is found by testing the

magnetometer, which will be covered in detail in Chapter 5. Figure 3-12 shows the process

of calculating the simulated magnetic field vector measurement from the known magnetic

field in the FIR frame.

DCM true ML.11ItpY

mag ref

magreticfieldn inr
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Figure 3-12: Magnetic Field Measurement Diagram

The simulated gravity vector measurement from the IMU's accelerometers is produced

in the same way as the magnetic field vector measurement. The gravity vector in the FIR

frame must be known at the beginning of the simulation. Due to the way the FIR frame

is defined, the gravity vector is always in the negative FIR z axis. The gravity vector is

measured in g's by the accelerometers, which produces the reference gravity vector given in

Equation 3.70.

............. ........ ................ ....... .. .......... ...... .... ......... --- ---



0

gravref 0 (3.70)

The gravity vector in the FIR frame is pre-multiplied by the DCM from the FIR frame

to the ABBF frame at each time step to produce the true gravity vector in the ABBF

frame. Random white noise with a mean of zero and an empirically determined variance is

added to each of the three components of the true magnetic field vector. The noisy vector

is then quantized to values of 0.01 g's to match the output of the actual accelerometers,

which is limited to one one-hundredth of a g in each axis. Figure 3-13 shows the process of

determining the simulated gravity vector measurement given the gravity vector in the FIR

frame and the DCM from the FIR frame to the ABBF frame.

DCM true Multiply
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Figure 3-13: Gravity Vector Measurement Diagram

The most straightforward of the simulated measurements is that of the air bearing rate

by the IMU's gyroscopes. Because the gyros are directly measuring part of the air bearing

state, the only manipulation necessary to produce a simulated measurement is to add white

noise to each component of the true rate vector provided by the air bearing plant block.

The noise has a mean of zero and an empirically determined variance. The magnitude

of the variance for the gyros is determined by testing the device and will be explained in

Chapter 5. Finally, the rate measurement is discrete so the continuous true rate input from

the air bearing plant must be discretized before noise can be added. Figure 3-14 shows how

...... . . ....................... ........ ........ . ...... ............. ..._ _ _ _= ....... .. ...........



the rate measurement is calculated in the Simulink block environment given the continuous

true rate input.

IL
rate _true ZC' rCmm-E

Figure 3-14: Air Bearing Angular Rate Measurement Diagram

3.2.3.4 Extended Kalman Filter Block

The Extended Kalman Filter can now be developed using the linearized model of the reac-

tion wheels and air bearing in addition to the measurements from the IMU and magnetome-

ter. The first step is to introduce the basics of a Kalman Filter. The goal of the Kalman

Filter is to provide the best estimate of the system state by optimally combining the inputs

from the system model with measurements of the system state. There are two major steps

to the discrete Kalman Filter process. The first step is to propagate the system state from

one time step to the next using the system model. The second is to update the propagated

state using measurement inputs from the available sensors. In order for the Kalman Filter

to provide an optimal state estimate, the filter must also propagate and update the error

covariance matrix P, which contains information about the uncertainty of the system model

and the individual sensor measurements. Figure 3-15 shows the basic two step process of

the Kalman Filter over the course of three time steps. For consistent notation, a e sign

will be used to denote propagated values that have not been updated with a measurement,

and a e sign will be used to denote updated values that have not been propagated [34].
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Figure 3-15: Discrete Kalman Filter Process [34]

The following will be a walk through of the two step Kalman Filter process for a general

system. First, the system state will be propagated from time tkI to time tk. Equation 3.71

gives the process for propagating the system state forward by one time step using the

discrete state and input matrices. Note that this is essentially the same as the discrete

state space equation previously derived.

= + B=ns_1 (3.71)

Equation 3.72 gives the process for propagating the error covariance matrix forward

by one time step. This equation is a function of the discrete state matrix as well as the

estimated noise covariance of the system model Qk_1. The model noise covariance matrix

is chosen to best describe the expected error induced by the system model. This matrix is

often adjusted once the Kalman Filter is implemented to produce the best state estimate.

The adjustment process is known as 'tuning' the Kalman Filter [34].

Pe - AdP@_ AT + Qk-1 (3.72)

The propagated system and error covariance matrix must now be updated using sensor

inputs. Equation 3.73 gives the method to compute the Kalman gain, which is the optimal

weighting factor used to mix the model input with the sensor inputs. The equation is a

function of the error covariance matrix as well as the estimated sensor noise covariance Rk.

The sensor noise covariance matrix is populated using the estimated noise introduced by

each of the sensors. The sensor noise covariance matrix can also be adjusted similar to

the model noise covariance matrix. Finally, the Cj matrix is not necessarily the same as

the output matrix from the state space model, but is constructed to produce the correct

estimated measurement vector from the state matrix [34].



Lk = P0 Cd[CdPkCdj + RkV| 1  (3.73)

Equation 3.74 gives the method used to update the state estimate by introducing the

sensor measurements. The vector yA is the measurement vector, which includes all the

sensor inputs. Equation 3.75 gives the process used to update the error covariance matrix

based on the Kalman gain [34].

2 =-e + Lk(yk - Cae) (3.74)Xk Xk k

Pk = (I - LkCd)Pke (3.75)

The above equations define the general two step Kalman Filter process to determine

the optimal state estimate from the initial time to any future time. Though the error

covariance matrix and Kalman gain are calculated at each time step, these values converge

over time for a linear time-invariant system. The error covariance matrix and Kalman gain

both converge to constant matrices. If the system state is to be estimated for an extended

period of time, computation per control cycle can be reduced by using the steady state

Kalman gain from the initial time step rather than waiting until the gain converges. Using

the steady state Kalman gain from the start results in a less than optimal estimate of the

state during the filter convergence period. However, once the filter converges, there is no

difference between the estimate produced using the two methods.

The steady state error covariance matrix is found by solving the discrete Riccati Equa-

tion given below in Equation 3.76. The only unknown in the discrete Riccati equation is

P,,. Once solved, the steady state error covariance matrix can be used to calculate the

steady state Kalman gain. However, the discrete Riccati equation is very difficult to ex-

plicitly solve. MATLAB offers a solution in the form of dlqr.m. This function solves the

discrete Riccati equation and produces the steady state error covariance matrix as well as

the steady state Kalman gain [34].

Ad( p - PAC [CaPSCj + R|1CPSS)A' + Q (3.76)



Using the steady state Kalman gain eliminates the need to propagate and update the

error covariance matrix. Therefore, the two step Kalman filter process is reduced to the

following two equations. Equation 3.77 is used to propagate the state (unchanged from

Equation 3.71) and Equation 3.78 is used to update the state with sensor inputs. Using the

steady state Kalman gain significantly reduces the computation speed required to produce

the optimal state estimate [34].

.,e= Aas"_ 1 + Bdk_1 (3.77)

Xk =k y - Cas ) (3.78)

With a basic understanding of the steady state discrete Kalman Filter, the process

will now be applied to the air bearing simulation. The filter used on the air bearing is

known as an Extended Kalman Filter rather than a regular Kalman Filter simply because

the equations of motion for the air bearing are linearized to create the state space model.

Otherwise, the two estimators are the same. The first step of the EKF process; propagating

the state using the state space model has already been explained above in the Air Bearing

State Space Block section. Therefore, the remainder of this section will focus on the second

step of the EKF process; updating the state estimate using sensor measurements.

The measurement vector yA is based on what sensor measurements are available to

update the state. For the air bearing, the measurement vector will contain twelve mea-

surements. The first three values represent the angular orientation of the three ABBF

axes measured by integrating the IMU rate gyroscopes. The next three values represent

the ABBF angular rates measured directly by the IMU rate gyroscopes. Positions seven

through nine of the measurement vector are populated by the angular orientation of the

three ABBF axes as measured by the IMU accelerometers. The final three positions of the

measurement vector are populated by the angular orientation of the three ABBF axes as

measured by the magnetometer. Equation 3.79 gives the full twelve position measurement

vector.
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The first six positions of the measurement vector can be filled by either integrating the

rate gyro measurements (first three positions) or directly placing the rate gyro measure-

ments in the vector (next three positions). The last six positions are not as easily filled.

The accelerometers and magnetometer do not directly measure the air bearing's angular

orientation but rather the gravity vector and magnetic field vector respectively. The first

step towards producing a useful measurement from these two sensors is to calculate the

DCM from the FIR frame to the commanded ABBF frame. This DCM is calculated just as

the one described in the Air Bearing Plant Block section that relates the FIR frame to the

true ABBF frame. The only difference is that this DCM is formed from the commanded

angular rate to produce the rotation matrix from the FIR frame to the commanded ABBF

frame.

The remainder of the process necessary to produce a measured angular orientation will

be described for the linear accelerometers. The same process is used to produce a measured

angular orientation from the magnetometers but will be omitted in this discussion. The

gravity vector in the FIR frame described above in the Measurement Blocks section and

given in Equation 3.70 is pre-multiplied by the DCM from the FIR frame to the commanded

ABBF frame to produce the commanded gravity vector. The commanded gravity vector

is defined as the vector that should be measured by the accelerometers if the air bearing

is located in the exact angular orientation where it is commanded to be. Though the



commanded gravity vector and measured gravity vector are both known, a direct subtraction

of the two does not produce useful attitude information. Equation 3.80 gives the process

necessary to produce angular orientation information from the measured and commanded

gravity vectors [46].

|meas X 9cmd
Oacc error -Y meas I I 9.d 1(.0

The cross product of the measured and commanded gravity vectors divided by their

magnitudes produces a three vector of attitude errors in the ABBF frame. Each component

of this vector is stating the angular error in radians between the commanded ABBF frame

and the ABBF frame as measured by the accelerometers [46]. Adding the commanded

angular orientation to the attitude error vector produced by Equation 3.80 gives the angular

orientation in the ABBF frame as measured by the accelerometers. Equation 3.81 shows

this process in equation form. The output of the below equation can now be placed within

the measurement vector given in Equation 3.79.

Ox acc [x cmd
Oyacc6 rind + gmeas X gcmd (3.81)

y ac ygmeas||9cmd

Oz accj Oz cmd

The same process is used to provide the angular orientation of the air bearing as mea-

sured by the magnetometer. The only difference is that the measured magnetic field vector

and the commanded magnetic field vector are used in place of the gravity vector as shown

in Equation 3.82.

Ox mag Ox cmd
ynag Oy cmd I + Bmeas x Bcmd (3.82)

y ma I c Bmeas|Bcnd|
Oz mag] Oz cmd]

Figure 3-16 shows the block diagram interpretation of Equation 3.81, which uses the

commanded and measured gravity vector to produce the air bearing angular orientation as

measured by the IMU accelerometers. Again, a similar block diagram is used to evaluate

the magnetic field measurement.
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Figure 3-16: Angular Orientation Vector from Gravity Vector Measurement

The measurement vector given in Equation 3.79 has been completely populated and

ready to be applied in the state update portion of the EKF process. However, the mea-

surement vector hides several limitations inherent to the measurement process that should

be explained. These limitations are the driving factor as to why the measurement vector

includes three separate measurements of the air bearing angular orientation and only one

of the air bearing angular rate.

Besides noise, measurement methods often have other limitations that introduce error to

the measurement process. First, the IMU rate gyroscopes produce an angular orientation

measurement by integrating the rate measurement. The rate gyroscope measurement is

assumed to have zero mean, but in reality, the noise often has some nonzero mean known as

bias. The bias usually has minimal effect when the measurement is used to simply estimate

rate. However, if the rate measurement is integrated to produce an angular orientation

measurement, the bias is integrated as well. This effect causes the angular orientation

measurement to 'walk' in either the positive or negative direction depending on the sign of

the bias even though the actual vehicle is not moving. This effect is difficult to correct in the

state estimation process and therefore, integrating gyroscope measurements to produce an

angular orientation measurement should be avoided if other sensors are available to provide

an angular orientation measurement without integration.

The IMU accelerometers and magnetometer provide angular orientation measurements

by finding the angular difference between a measured vector in three dimensional space

and where that vector is supposed to be. Using the accelerometers as an example, the
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error between the measured and commanded gravity vector is found. This process provides

error information about two of the three orthogonal axes. However, the accelerometers

cannot determine angular error about the true gravity vector because this information is

not included in the cross product used to calculate angular error. For the air bearing, this

means that the accelerometers cannot measure angular orientation error about the z,f axis.

The angular orientation measurement found from the accelerometers is still a three vector

regardless of the unobservable rotation axis. However, the cross product of the measured

and commanded gravity vector produces a zero error value about the unobservable axis.

Therefore, the angular orientation measurement is assumed to be equal to the commanded

angular orientation about the unobservable axis, and is corrected by the measurement only

in the two observable axes.

The magnetometer faces the same limitation as the accelerometers because it uses essen-

tially the same process as the accelerometers to find attitude error. The angular orientation

about the true magnetic field vector is unobservable. However, by using both sensors in

combination with each other, all three orthogonal axes are observable as long as the true

gravity vector and true magnetic field vector are not co-aligned.

Equation 3.83 gives the EKF state update equation with the air bearing state and

measurement vectors substituted in place of the general variables. Using this equation and

a better understanding of the benefits and limitations of the air bearing sensors, the Cdab

matrix can be formed to provide the best combination of measurements to apply to the

state estimate.

Equation 3.84 gives the Cdab that is most commonly used in the simulation. The matrix

must be a twelve by six matrix to operate within the state update equation. The below

equation uses the angular rate measurement from the IMU gyroscopes and the angular

orientation measurements from the IMU accelerometers and magnetometer. The matrix

ignores the angular orientation measurement from the integrated IMU gyroscopes due to

the bias error explained above. This matrix can be modified to meet the needs of a given

test. For example, if the test requires that the accelerometers provide the only angular

orientation measurement, the positions in the below matrix relating the the magnetometer

measurements can be set to zero and visa versa.
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
Cdabs (3.84)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

The final unknown in the air bearing state update equation is the steady state Kalman

gain L,,. This is found using MATLAB's dlge.m function to solve the discrete Riccati

equation. Equation 3.85 gives the equation and inputs necessary to produce the steady

state Kalman gain. The only unknown input is the six by six identity matrix. This is

simply a scaling matrix between the model noise covariance and the sensor noise covariance

and is set to identify because the scaling factor is included in the noise covariance matrices.



L,, = dlqe(Ad ab, I, Cd ab, Qiqe, Riqe) (3.85)

The state update step of the EKF is now ready to be applied to the simulation. Figure 3-

17 shows the block diagram interpretation of the state update process. Beginning with the

commanded angular rate and orientation as well as the sensor measurements and propagated

state, the updated state is produced. The updated state represents the best estimate of

the state at the current time step. This is the output of the EKF, which is provided as an

input to the control module for comparison with the commanded state.

(r 3e)-

rate and

state pCs, k

State neg. K

measured poition from
magnetometer

mag meias

Figure 3-17: State Update Diagram within EKF
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3.2.4 Command Module

The command module provides the three axis commanded angular orientation and rate to

the air bearing control law. These commands are given in the ABBF frame. Providing the

commands in the ABBF frame allows for the test designer to visualize the motion of the

air bearing in response to the commands being provided since each commanded angular

orientation or rate directly relates to commanded motion about one of the air bearing's

principle axes. The DCM from the FIR frame to the commanded ABBF frame found in the

EKF module can be used to relate the commanded angular orientation and rate to the FIR

frame so that the commanded motion of the air bearing in the simulation can be compared

with the motion of the actual air bearing as seen by a stationary observer.

A scalar command as a function of time must be provided for each ABBF axis. Three

total commands are required to complete the three vector of angular orientation and rate.

The commands can be given either in radians as the angular orientation command or in

radians per second as the angular rate command. If the command is given in radians, the

command is differentiated to produce the commanded angular rate in radians per second.

If the command is given in radians per second, the command is integrated to produce the

commanded angular orientation in radians.

In order to not saturate the control law with angular orientation or rate inputs that are

significantly different than the estimated angular orientation and rate, commands should be

continuous at a minimum and smooth if possible. For example, a step input should not be

used as a command for either angular orientation or rate because at the instant the step is

applied, the commanded angular value is significantly different than the estimated angular

value. Furthermore, if the step input is applied as a commanded angular orientation, the

commanded angular rate, which is the derivative of the commanded orientation will be an

impulse. This is especially not desirable.

For commanded angular rate, ramp inputs are acceptable because even though they are

not smooth, they are continuous, and their integral is smooth providing a smooth com-

manded angular orientation. Sinusoidal inputs are ideal because they are smooth and both

their derivative and integral are smooth. Therefore, a sinusoidal input provided either as the

commanded angular orientation or rate will guarantee smooth inputs for both commanded



values. In general, angular rate is commanded because ramp inputs can be used, which are

then integrated to produce smooth commanded angular orientations.

Figure 3-18 shows an example of the command block. As seen in the figure, a scalar

commanded rate is calculated for each ABBF axis using a series of ramp inputs. These com-

manded rates are concatenated to produce a three vector of commanded angular rates. The

angular rates are integrated to produce a three vector of commanded angular orientations.

These values are then output to the control module.

Mxr Hbdontgrto

y body ++ ++ ++
z~~~ bodo+d+y+

x body + +, +

Figure 3-18: Commanded Angular Orientation and Rate Diagram

The ramp inputs can be set to start at any given time to produce the desired angular

rate. By adding ramps with equal magnitude and opposite slope, the commanded rate can

be stopped, reversed, returned to zero, etc. Figure 3-19 shows the three commanded rates

produced by the series of ramps shown in Figure 3-18. The four ramps used for each ABBF

axis produce the trapezoidal commanded rate seen in this figure. The zody axis has two sets

of four ramps which produce the two distinct angular rate commands seen in Figure 3-19.



002

4 -00
E
E

O -o -0.04-

-0,06-

-0 08
0 60 100 150 200 250

Time (sec)

Figure 3-19: Commanded Angular Rate over Time

Integrating the commanded rate produces the commanded angular orientations seen in

Figure 3-20. Unlike the commanded angular rates, the commanded angular orientations

are smooth. This is because integrating the ramps in Figure 3-19 produce the parabolas

connecting the linear portions of Figure 3-20. This series of commanded angular rates

and orientations is a commonly used test scenario applied to validate the operation of the

physical air bearing and simulation. These tests and results will be described in Chapter 5.

......... ............... .............
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Figure 3-20: Commanded Angular Orientation over Time

The command module is the most flexible in the air bearing simulation. Commanded

angular rates and orientations can be designed to meet the needs of almost any test scenario.

The only limits to the commanded angular rates and orientations are those set by the

physical limitations of the air bearing and reaction wheels.

3.2.5 Control Module

The control module uses several common control techniques in parallel to produce an effec-

tive control input to the system. Though the following section will cover the current set of

control algorithms used on the air bearing, this module also lends itself to modification as

easily as the command module. The control techniques applied can be adjusted throughout

the test process to better meet the goals of the current test scenario.

The current control set includes a feedback portion consisting of a discrete linear quadratic

regular (LQR) and a simple derivative gain for rate damping. The control set also includes

a feedforward portion that uses the air bearing equations of motion to produce the reac-

tion wheel angular rates required to achieve commanded maneuvers with or without stored

angular momentum. The feedforward portion will be described first because this portion

produces the primary set of commanded reaction wheel angular rates used to control the

air bearing. The feedback portion accounts for error between the predicted torque from the

_ _ _ _ _ _ . ...... .. ... .............................. ....... ...... ....... .._ _.. ............ ..... ....... ........ ..... ..........



feedforward portion and the true torque required to produce the commanded air bearing

angular orientations and rates.

The vector air bearing equation of motion that produces air bearing angular accelera-

tions from reaction wheel angular accelerations and the current state of the system is given

in Equation 3.25 in the Air Bearing Plant Block section. Knowing that this equation pro-

duces a given air bearing angular acceleration from a given set of reaction wheel angular

accelerations and the current reaction wheel and air bearing angular rates, the equation can

be manipulated to produce the commanded reaction wheel angular accelerations based on a

set of commanded air bearing angular rates. Equation 3.86 gives the manipulated equation

as a function of the commanded air bearing angular rate and its derivative as well as the

commanded reaction wheel angular rate, which is found by integrative the output of this

equation.

ocmd I-RD- IABbcmd -(DTcmd X IABC2cmd) - (Pcmd x DIRWncmd)] (3.86)

Figure 3-21 shows the above equation in the Simulink block diagram format. Some test

cases require the angular velocity of the wheels to be set at a nonzero value as an initial

condition. These nonzero reaction wheel angular velocities are placed into the simulation

as the initial condition to the integrator within the feedforward block that produces com-

manded reaction wheel angular rate from commanded reaction wheel angular acceleration.

By placing the reaction wheel initial conditions within this block, the feedforward equation

above can account for the additional gyroscopic effects resulting from the nonzero reaction

wheel angular rates.



Figure 3-21: Feedforward Control Diagram

To show the effects of nonzero angular reaction wheel rates on the air bearing system,

two commanded reaction wheel angular rate profiles will be calculated using the same

commanded air bearing angular rate profile; one with zero initial reaction wheel angular

rate and the second with nonzero initial reaction wheel angular rate. The two profiles will

be compared in the following two figures. The commanded air bearing angular rate input to

the feedforward equation will be the same as those given above in Figure 3-19. Figure 3-22

shows the commanded reaction wheel rates required to achieve the commanded air bearing

angular rate given in Figure 3-19 assuming zero initial reaction wheel velocity. The wheels

return to zero angular velocity after completing each maneuver.

. ... ........ ............ ...... .......... ........ ............................ ...... ..... .... .......... - - -----
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Figure 3-22: Commanded Reaction Wheel Rates - Zero IC

Figure 3-23 shows the commanded reaction wheel rates required to achieve the same

commanded air bearing rate assuming that the reaction wheels have the initial conditions

given below in Equation 3.87. The reaction wheels do not return to their initial conditions

after completing each maneuver as seen in Figure 3-22. This is because the nonzero initial

reaction wheel rates produce gyroscopic torques that must be accounted for by adjusting the

commanded reaction wheel rates themselves. Therefore, even though the commanded air

bearing angular rates are the same for both cases, the feedforward controller produces the

commanded reaction wheel angular rates required to perform the commanded air bearing

rates regardless of the initial or current state of the system.

40
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Qo = 40 -- (3.87)
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Figure 3-23: Commanded Reaction Wheel Rates - Nonzero IC

The feedback portion of the control law uses a linear quadratic regulator and constant

derivative gain to account for errors between the commanded state and the estimated state

from the EKF. The state error should be minimal due to the feedforward control portion.

Errors are caused by inaccuracies in the system model used to produce the vector equation

of motion as well as disturbance torques that are unknown to the model. Errors are also

caused by not modeling reaction wheel lag in the feedforward equation.

First, the LQR controller will be described. An LQR controller uses the state space

model to find a feedback gain matrix that provides the optimal full state feedback gains for

a given set of state and input weighting matrices. These weighting matrices are constructed

by ranking the importance of maintaining minimum error for each individual state and

input. As will be seen in the following discussion, the process is very similar to the method

for producing the Kalman gain by using weighting matrices and solving the discrete Riccati

Equation [33].

The foundation of an LQR controller is the cost function, which is a function of the

system state and inputs. Equation 3.88 gives the cost function used to develop an LQR

controller. The state weighting matrix Q is used to set the importance of controlling each

state. If one of the states is more important to control than the others, a large value can be
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placed in the corresponding position within the state weighting matrix. This will place a

larger cost on that particular state and drive the cost function to minimize that state more

so than the others. The same holds for the input weighting matrix R. If control inputs

should be kept to a minimum, high values can be set within the matrix R. Similar to the

Kalman gain development process, these matrices can be tuned to provide the ideal control

as desired by the control designer [33].

j= j[CTQCs + TRil dt (3.88)
0

To minimize the cost function, the derivative of the function is set to zero. The resulting

equation given in Equation 3.89 is the algebraic Riccati Equation for control. This equation

is very similar to the Riccati Equation used for finding the Kalman gain in the EKF [33].

0 = ATP + PA + CTQC - PBR-BTP (3.89)

By substituting the system state space model and weighting matrices into the above

equation, the P matrix can be found. Substituting P into Equation 3.90 gives the optimal

feedback gain for the system. Multiplying this gain by the estimated state produces the

optimal closed loop input to the system [33].

Ki, = Rl'BTP (3.90)

The linearized state space model of the air bearing is developed for use in the EKF.

Therefore the model is ready for use in finding the optimal LQR gain. The weighting

matrices are the only missing components. Though the values within the weighting matrices

are often tuned to fit the specific test scenario, the weight placed on the air bearing state is

usually significantly higher than the input since the reaction wheels are not considered an

expendable resource. They can be operated as much as necessary over the course of a given

test scenario. If other actuators like thrusters were placed on the air bearing, the input

weighting matrix may require adjustment.

Similar to the estimator Riccati Equation, MATLAB is used to solve the controller

Riccati Equation and produce the LQR gain matrix. Equation 3.91 gives the command

required to use MATLAB's discrete LQR function.
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Kiqr= dlqr (Ad ab, Bd ab iQqr, Rlqr)

LQR controllers are often used as the only control algorithm for a system. Because

the air bearing uses the LQR controller in combination with a feedforward controller that

produces the primary control inputs, the LQR controller is only required to account for state

error. Therefore, the feedback gain is implemented differently than the typical method.

Equation 3.92 gives the method for applying the feedback gain. The gain is multiplied by

the state error rather than the state itself. This produces input commands relating to the

state error regardless of the commanded state. These inputs due to error are eventually

added to the inputs from the feedforward portion to produce the total commanded reaction

wheel angular rate from the controller suite.

Ocmd Iqr Kiqr * [cmd - -est] (3.92)

The last stage of the air bearing controller is the derivative gain. This portion finds

the estimated air bearing angular acceleration by differentiating the estimated air bear-

ing angular rate. The commanded acceleration is set to zero as a means to dampen air

bearing rate commands and reduce oscillation. The acceleration error (the negative of the

estimated acceleration) is multiplied by an adjustable gain to produce a commanded air

bearing acceleration. This acceleration must be transformed from a commanded air bear-

ing acceleration to a commanded reaction wheel acceleration using the linearized equations

of motion. Equation 3.93 gives the process for determining the commanded reaction wheel

acceleration from the derivative feedback portion [33].

cmdderiv I DT IAB [Kd * (L-&est)] (3.93)

The commanded reaction wheel angular accelerations from the LQR controller and

derivative controller are summed to produce the total commanded reaction wheel accel-

eration due to state error as seen in Figure 3-24. This is integrated and added to the

commanded reaction wheel rate calculated by the feedforward portion of the controller to

produce the total commanded reaction wheel angular rate from the series of air bearing

control algorithms. The inputs are fed into the reaction wheel motor controller block.
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Figure 3-24: Feedback Control Diagram

The final feedback control used on the air bearing is the reaction wheel angular rate

feedback into the motor controller algorithm. This closed loop operates within the larger

air bearing control loop. The control loop is necessary due to the operation of the motor

controllers used on the air bearing. The motor controllers command voltage to the reaction

wheels. This allows the wheels to accelerate to a higher angular rate as predicted by their

equations of motion. However, if the wheels are commanded to a lower angular rate in the

same direction, the voltage change does not drive the motors to the new commanded speed.

Rather, the motors coast until friction reduces their angular rate to the commanded value.

In order to mitigate this problem, the fed back angular rate from the motor encoders is used

to determine if the reaction wheels are spinning faster than they are commanded to spin.

If their rate is five percent higher than the commanded value, the wheels are commanded

to brake until they reduce their speed to within percent of the initially commanded speed.

Braking the wheels means that the motor controller connects the positive and negative leads

from the motor together. This eliminates the path for back EMF to travel and creates a

force against the motion of the motor, causing it to reduce speed with a time constant similar

to positive acceleration. The reaction wheel inner control loop forces the reaction wheels

to behave similar to a motor control system using current commands that could evenly

accelerate the wheels to higher or lower angular velocities. This is important because the

remaining air bearing control process assumes the wheels can be commanded equally in both

directions. Though this process provides a solution to the reaction wheel control problem,
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there are disturbances introduced that are otherwise not accounted for, which adds error

to the system.

3.2.6 Simulation Assumptions and Limitations

Like any simulation of a physical system, the testbed simulation described in this chapter

has limitations due to assumptions made to create the simulation. These limitations affect

the accuracy of the model, but as long as they are understood and accounted for, the results

of the simulation can be quite beneficial. The assumptions made within the simulation can

be grouped into two main areas; those affecting the results of the air bearing plant and

those affecting the estimator algorithm.

The most sweeping assumption in the plant module is that the simulated true state of

the reaction wheels and air bearing are calculated using the same equations of motion used

to develop the state space model of the system. This artificially improves the accuracy of

the state space model because this process assumes that the known equations of motion

perfectly define the state of the system. In reality this is not the case. Though the general

structure of the equations of motion for both the reaction wheels and air bearing are correct,

the coefficients used within the equations have some unknown error.

The reaction wheel equations of motion use coefficients from the manufacturer's spec-

ification sheet. These same coefficients are used for all three orthogonal reaction wheels.

The actual reaction wheel motors likely have values that are slightly different than these

specifications and therefore do not react to the same input in the exact same way. For

the air bearing, the defining coefficient within the equations of motion is the inertia of the

vehicle. This is determined by the SolidWorks model of the air bearing. The SolidWorks

model excludes some of the electronic devices on the air bearing and likely does not model

every piece of hardware to exact specifications. Therefore, the true inertia of the vehicle

is different than that found using the SolidWorks model. Overall, the difference in the

simulated and true dynamics coefficients for the reaction wheels and air bearing means that

the system model more accurately defines the motion of the simulated system than the true

system. There are methods to more precisely determine the dynamics coefficients for the

testbed, and though they have yet to be implemented, they can be used to more accurately

match the simulated model with the true system.
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An additional assumption causing error between the simulated plant module and the

actual system is the assumption that there are no disturbance torques on the system. In

simulation, there are no disturbance torques affecting the motion of the air bearing. How-

ever, in reality there are always disturbance torques on the system. The largest disturbance

torque is due to the misalignment of the adjustable center of mass with the fixed center

of rotation. These two points must be co-located in order to remove torque on the system

due to gravity. Even the smallest misalignment causes gravity to torque the vehicle, which

causes motion that is not modeled in the simulation. Other sources of disturbance torques

include friction, which is significantly reduced by the air cushion that floats the vehicle

but not eliminated, and atmospheric torques due to air moving around the testbed. These

additional torques require additional control input from the reaction wheels that are not

accounted for in the simulation. Though the control algorithm can usually handle these

torques, they may cause attitude error to exceed the requirements of a given test or cause

the reaction wheels to saturation much sooner than expected.

The estimator and controller algorithms within the simulation are also based on several

assumptions that limit the precision between the actual and simulated systems. The EKF

provides the optimal estimate based on the assumption that the sensors have zero mean

noise. The actual IMU rate gyroscopes are known to not have zero mean noise. Tests can

be run to characterize the noise and attempt to remove bias, though the bias itself does not

seem to be constant. The simulation assumes that noise from all sensors has zero mean.

Therefore, the simulated estimator is more accurate than the actual estimator on the air

bearing.

Overall, the assumptions made to develop the testbed simulation produce inconsisten-

cies between the simulated system and the actual system, but the benefits of having an

operational system simulation outweigh the limitations of the system due to the assump-

tions. Furthermore, with additional testing, error induced by the above assumptions can

be reduced, and as long as the assumptions are accounted for, the results of the simulation

are a powerful tool in developing and evaluating test scenarios on the ADCS testbed.
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Chapter 4

ADCS Testbed Development

The ADCS testbed is designed to provide a versatile platform for testing small satellite

attitude determination and control systems from the component level to a fully integrated

system as well as provide a hands on educational tool for students learning attitude esti-

mation and control concepts. This chapter will discuss the detailed development of each

of the physical testbed subsystems that come together to produce a robust, functional test

platform capable of effectively evaluating complex control systems while also functioning as

an easy to use educational tool.

Software development will also be discussed in order to provide a clear understanding

of the testbed's avionics and communication protocol. Familiarization with the testbed's

software operation will allow the test designer to effectively write new software algorithms

that operate within the testbed's capabilities and are written to meet the needs of the

required test scenario.

Finally, supporting equipment like the SPHERES satellites and the external magnetic

field generator will be discussed. These devices provide expansion capability to the ADCS

testbed. A SPHERES satellite can be mounted to the top of the air bearing to provide

an external attitude estimate that can be sent directly to the ground station computer as

additional attitude data for post processing. With some additional coding, the SPHERES

can even send real time attitude information to the testbed avionics system and receive

control commands from the avionics system using the SPHERES expansion port. In this

configuration, the SPHERES' sensor measurements can be included in the EKF running
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on the air bearing, and the air bearing control law can incorporate the SPHERES' cold gas

thrusters for additional attitude control.

The external magnetic field generator can provide a well known magnetic field vector

for attitude determination via on-board magnetometers as well as produce a magnetic field

strong enough to perform magnetic attitude control tests within a laboratory environment

where disturbance torques would prohibit magnetic torque maneuvers using Earth's mag-

netic field.

4.1 Testbed Subsystems

Though the air bearing is designed to be an ADCS testbed, it must incorporate all the major

subsystems of a general satellite in order to support ADCS testing. Testing an integrated

set of attitude sensors and actuators connected via estimation and control software requires

support from other subsystems like power, avionics, communications, and of course struc-

tures. Because the system is an ADCS testbed, the supporting subsystems are not designed

to test their respective counterparts on any specific satellite program. Rather, they are de-

signed to best support the expected battery of ADCS test scenarios that can be performed

on the air bearing testbed.

4.1.1 Structure

The primary objective of the air bearing structure is to provide a physical platform capable

of interfacing with the hemispherical base as well as provide attachment points and stability

for the components necessary to perform ADCS testing. The foundation of the structure

is the hemisphere that floats on the cushion of compressed air. The hemisphere is the only

portion of the vehicle that is in contact with the fixed inertial air bearing support column.

However, the hemisphere is not actually touching the support column, but rather floating

slightly above the column supported completely by a layer of compressed air. This support

method is what gives the air bearing the ability to rotate in all three axes with significantly

reduced friction while also being constrained to zero translational motion.
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Figure 4-1: Air Bearing Support Column with Rotating Hemisphere

Figure 4-1 shows a SolidWorks rendering of the hemisphere positioned within the fixed

inertial bowl on the support column. Compressed air is pumped between the gray bowl and

the purple hemisphere to float the hemisphere and anything attached to it using the four

threaded bolt holes on the top portion of the hemisphere. The hemisphere has a diameter

of 0.124 meters and is positioned 1.216 meters above the base of the support column.

The structure attached to the rotating hemisphere is responsible for securing the com-

ponents necessary to perform ADCS testing while ensuring safe operation of the air bear-

ing. The structure is designed to roughly emulate the inertial properties of an ESPA class

satellite, which is a common small satellite design used within the university environment.

Smaller satellites like cubesats are also common in a university environment. Though the

air bearing structure is larger than cubesat structures, cubesat ADCS components can still

be mounted on the air bearing, and attitude control devices can be scale tested. The mass

and volume requirements of an ESPA class satellite as defined by the Department of Defense

(DoD) Space Test Program are listed in Table 4.1 [5].
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Table 4.1: DoD STP ESPA Class Satellite Inertial Requirements

Property Value
Mass 181 kg
x Axis Length 61 cm
y Axis Length 71 cm
z Axis Length 97 cm
Minimum First Mode 35 Hz

MIT's SSL has two ESPA class satellites in the development phase; CASTOR and

TERSat. Though these satellites are technically ESPA class satellites, they are being devel-

oped under AFRL's University Nanosat Program which places additional mass and volume

requirements on ESPA class satellites. Table 4.2 gives the more stringent UNP require-

ments [26].

Table 4.2: UNP ESPA Class Satellite Inertial Requirements

Property Value
Mass 50 kg
x Axis Length 50 cm
y Axis Length 50 cm
z Axis Length 60 cm
Minimum First Mode 100 Hz

A rectangular satellite with the dimensions and uniformly distributed mass listed in

Table 4.2 would have the principle axis inertia values listed in Equation 4.1 according to

SolidWorks. In order to provide a comparable test environment with respect to the below

inertial properties, the air bearing testbed should maintain inertial properties within an

order of magnitude of these values and strive to be as close as possible.

Im 0 0 2.54 0 0

IUNP Req= 0 Iyy 0 0 2.54 0 kgm 2  (4.1)

0 0 Izz] 0 0 2.08]

The default configuration of the air bearing testbed has the mass given in Equation 4.2

and the ABBF aligned inertia matrix given in Equation 4.3. These values are taken from

the SolidWorks model of the air bearing structure shown in Figure 4-2.
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mab = 40.5kg

IXX 0 0 4.08 0 0

Iab 0 Iyy 0 = 0 4.14 0 kgm 2

0 0 Izz 0 0 2.32

(4.3)

Figure 4-2: Air Bearing SolidWorks Model

The SolidWorks model of the air bearing does not show the support column, but just the

physical components that are fixed to the rotating hemisphere. The electrical components

...... ............. ...... ....... --- - ------------------------------- --
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of the system are included in the model, but much of the wiring harness connecting the

components is not included. This omission is a source of error in estimating the mass and

inertia matrix of the air bearing, but this error is small since the mass of the wiring harness

is much less than the mass of the modeled portion. The mass and inertia values given

above are similar to those of a general rectangular UNP ESPA class satellite allowing for

ADCS test scenarios to be performed with minimal scaling necessary between the satellite

ADCS system and the testbed when testing ESPA class satellites. For cubesats, scaling

is required to perform tests on the air bearing. However, the testbed can accommodate

mounting an entire three unit cubesat with dimensions of ten by ten by thirty centimeters

for fully integrated ADCS testing using an engineering model or the cubesat flight model.

The testbed structure is also designed to be symmetric and versatile. All major struc-

tural components are symmetrically mounted about the ABBF z axis. The base plate,

which mounts directly to the rotating hemisphere provides connection points for all other

structural components on the air bearing. Mounted on standoffs just above the base plate

are the three primary electrical component mounting plates as can be seen in Figure 4-2.

These plates are interchangeable allowing for easy switching of test components without

significant changes to the air bearing's structure or inertial properties. The center support

truss mounted in the middle of the base plate is made up of four identical A frame sup-

ports. Two component plates with identical interfacing holes are mounted between these

four frames; one just above the other. For the default air bearing configuration, the bottom

plate supports the fourth reaction wheel and the top plate supports the SPHERES inter-

face. Reference Figure 4-2 for clarity. These plates can also be exchanged depending on the

test requirements.

An important aspect of the testbed structure is to have the center of mass of the rotating

portion to be collocated with the center of rotation, which is located at the center of the

hemisphere shown in Figure 4-1. According to SolidWorks, the center of mass of the model

shown in Figure 4-2 is exactly aligned with the center of rotation. However, modeling errors

and omissions like the wiring harness are enough to move the center of mass away from the

center of rotation. This misalignment allows gravity to torque the vehicle because gravity

acts on the center of mass, and torque is created when a moment arm exists between the

center of rotation and the point where gravitational force acts on the vehicle. In order to

remove this torque even with inaccurate center of mass estimates, the structure has CM
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adjustment fixtures. Large CM adjustments can be made (primarily in the ABBF z axis)

by moving the three battery packs up or down their threaded support rods. The battery

packs are shown in blue in Figure 4-3. The battery packs can be moved up or down to

accommodate large component changes on the center support truss like adding or removing

a SPHERES satellite. For smaller CM adjustments due to smaller component changes, trim

masses can be added to the base plate at the six trim mass attachment points identified in

Figure 4-3.

Figure 4-3: Air Bearing Center of Mass Adjusters

For fine CM adjustments necessary to reduce CM/center of rotation alignment error to

an acceptable amount after making course adjustments with the battery packs and trim

masses, the six CM adjusters shown in Figure 4-3 can be used. Twisting the handle of the
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CM adjusters slides the mass linearly along the axis aligned with the handles. Each CM

adjuster has a fifteen millimeter range of motion and the sliding portion has a mass of 0.255

kilograms. There are two CM adjusters located on the ABBF x axis. One on the positive

side and one on the negative side. There are two more similarly located on the ABBF y

axis. The total CM adjustment capability in the ABBF x axis due to the two CM adjusters

can be found using Equation 4.4 [54]. This same equation can be used for the ABBF y and

z axes.

CMX _ mab * Xab + mCM adj * XCM adj (4.4)
mab + mCM adj

Assume that the mass of the air bearing mab is at the center of the ABBF x axis

(Xab = 0). Therefore, the center of mass change will be a function of moving the CM

adjusters. Initially, if the CM adjusters are assumed to be in the zero position (XCM adj = 0),

the total CM of the system is also zero, representing no change. If the CM adjusters are

moved from their zero position to their fully extended position, their position along the

ABBF x axis becomes fifteen millimeters. Equation 4.5 gives the CM adjustment distance

due to the change in CM adjuster position.

39.99kg * Om + (0.255kg + 0.255kg) * 0.015m

39.99kg + 0.255kg + 0.255kg

Roughly one fifth of a millimeter might seem like a small amount, but this adjustment

can make a significant reduction in torque due to gravity on the testbed once rough CM

adjustments have been made with the battery packs and trim masses. As can be seen

in Figure 4-3, the ABBF z axis adjusters are mounted differently than the ABBF x and

y axis adjusters. The ABBF z axis adjusters are both on the positive size of the ABBF

z axis. Therefore, in order to make ABBF z axis adjustments to the center of mass that are

independent of the x and y axes, the ABBF z axis adjusters need to be moved equally. The

ABBF x and y CM adjusters are not constrained to this requirement and can be adjusted

independently as necessary.

The final structural component is the safety ring mounted at the base of the battery

support rods. The ring is designed to prevent damage to the air bearing by contacting the

inertial support column before the base plate touches the edge of the hemisphere support

bowl. This scenario is shown in Figure 4-4.
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Figure 4-4: Air Bearing Maximum FIR x Axis Rotation

The safety ring is mounted 0.55 meters below the bottom of the base plate and has an

inner diameter of 0.52 meters. The outer diameter of the inertial support column is 0.129

meters. Modeling these dimensions in SolidWorks produces an accurate angular rotation

limit in the FIR x and y axes. The rotation limit due to the safety ring in the FIR x and y

axes is nineteen degrees for each axis. There is no rotation limit about the FIR z axis.

The structure is designed to be versatile enough to accommodate a range or test compo-

nents as well as provide support for those components. The structure also allows for center

of mass adjustment to reduce gravity disturbance torques and allows for safe operation by

eliminating the possibility of damage due to over-rotation.
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4.1.2 Power

The testbed power system is designed to provide the necessary power to the electrical

components on-board the air bearing for an amount of time sufficient to perform desired

test scenarios without requiring battery recharging during testing. Therefore, the batteries

must be able to power the air bearing for several hours before needing to be recharged to

accommodate test scenario setup and test iteration. The power source for the air bearing

includes three fourteen volt nickel-metal hydride (NiMH) batteries that each provide a

charge capacity of 6.5 amp-hours. The three NiMH batteries are independent of each other,

though all three are grounded together through the avionics system. As can be seen in the

electrical diagram given in Figure 4-5, one battery is used to power the DC-DC five volt

converter that runs the avionics stack. The other two batteries independently power the

two motor controllers.

The Pololu Trex motor controllers can accept a voltage input between six and sixteen

volts. The fourteen volt input from the batteries provides a voltage near maximum that the

motor controllers can direct into the reaction wheel motors to provide maximum reaction

wheel angular velocity. The Pololu Trex rnotor controllers have a low power DC-DC five

volt converter on-board that is used to provide power to the motor encoders, which oper-

ate independently from the motors themselves. The encoders are powered by the motor

controller's five volt output rather than the main DC-DC five volt converter so that the

encoders are only on when the reaction wheels are in use. Reference Figure 4-5 for wiring

clarification and Table 4.3 for the motor controller power requirements. Often the avionics

stack must be powered to update or test software algorithms, and powering the reaction

wheels in this case is unnecessary. Therefore, each battery has its own power switch so that

power to the avionics stack can be controlled independently of the motor controllers.

Table 4.3: Pololu Trex Motor Controller Power Requirements

Current (A) Voltage (V) Power (W)

MC One (with Encoders) 0.323 14.0 4.522
MC Two 0.089 14.0 1.246
Reaction Wheel (max torque) 5.9 14.0 82.6
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Three

14V IIGnd

Figure 4-5: Air Bearing Electrical Diagram

The avionics stack requires a five volt input, and is powered by a ten watt DC-DC

converter that can take an input from ten to thirty-six volts and provide a regulated five

volt output with up to two amps of current draw. As shown in Table 4.4, the output

from the DC-DC converter to the avionics stack is 0.514 amps, which is only about twenty-

five percent of the DC-DC converter's operating limit. Table 4.4 also gives the DC-DC

converter's power efficiency.
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Table 4.4: Five Volt DC-DC Converter Efficiency

Current (A) Voltage (V) Power (W)
Input 0.242 14.0 3.388
Output 0.514 5.0 2.570
Efficiency 75.8%

As seen in Figure 4-5, the DC-DC converter provides power to the input port of the Uni-

versal Serial Bus (USB) communication board. This board emulates a USB port hardwired

to a computer. Since the communications board is not directly connected to a computer, it

must receive power from another source; in this case, the DC-DC five volt converter. The

avionics stack receives power from the five volt converter via the USB connections from

the USB communication board. USB cables are represented by the connections with gray

backgrounds in Figure 4-5.

The Main and Auxiliary Arduinos are powered via USB connections. The external

components like the sensors and real time clock (RTC) module are powered from voltage

outputs on the Main Arduino. The IMU and real time clock module use five volts, and

the magnetometer requires 3.3 volts produced by a low power five volt to 3.3 volt DC-DC

converter located on the Arduino. Table 4.5 shows the current draws, operating voltages,

and power consumed by each of the components as well as the total power consumed by

the avionics stack.

Table 4.5: Avionics Stack Power Requirements

Current (A) Voltage (V) Power (W)

Main Arduino Mega 0.032 5.0 0.16
Aux Arduino Mega 0.032 5.0 0.16
IMU 0.072 5.0 0.36
Magnetometer 0.001 3.3 0.003
Total 0.514 5.0 2.57

As seen in the above table, the total current from the DC-DC five volt converter is much

higher than the sum of the components listed. This is due to the additional components not

listed in Table 4.5. These components include the USB communication board and the USB

Hub. The communication board is responsible for the majority of the additional current
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draw, and the USB Hub accounts for the remaining difference. Even with a total current

draw of 0.514 amps at five volts, the battery is capable of providing power to the avionics

stack for approximately thirteen hours assuming a fifty percent depth of discharge. For the

motor controllers, each battery must power one controller and two reaction wheels. If the

reaction wheels are all running at maximum torque, the batteries could sustain power for

only about fifteen minutes assuming fifty percent depth of discharge. However, the batteries

do not maintain constant maximum torque and have an average power draw of between 0.5

and one amp. At this rate of power consumption, each battery can provide power to the

motor controllers for approximately 1.5 hours at fifty percent depth of discharge.

The air bearing power system provides the required power to operate the system for

the length of time necessary to perform a complete test scenario to include test setup,

modification, and iteration without needing to pause for battery charging. Therefore the test

engineer can effectively ignore the power system during testing, which allows the engineer

to focus on the test itself rather than supporting subsystems like power.
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4.1.3 Avionics and Communication

The testbed avionics and communication system is made up of all the electrical components

besides the reaction wheels themselves. The system includes two Arduino Mega Processors,

two Pololu Trex Dual Motor Controllers, an Analog Devices Three Axis Inertial Measure-

ment Unit, a MicroMag3 Three Axis Magnetometer, a Sparkfun Real Time Clock Module,

and a TruLink Wireless USB Connector. These components work together to produce an

operational avionics system capable of estimating the air bearing's inertial angular orien-

tation and rate, determining the attitude control inputs necessary to move the air bearing

to the commanded angular orientation and rate, and send those commands to the attitude

control actuators; in this case the reaction wheels. Figure 4-6 shows the SolidWorks model

of each of the component mounting plates next to images of the actual plates. All of the

avionics and communication components listed above are located on the component mount-

ing plates except for the magnetometer. The Main and Auxiliary Arduinos along with the

IMU are located on component plate one in Figures 4-6(a) and 4-6(b). The communication

board, the five volt DC-DC converter, and the avionics stack power switch are located on

component plate two in Figures 4-6(c) and 4-6(d). The two motor controllers along with the

power switches for each are located on component plate three in Figures 4-6(e) and 4-6(f).

The magnetometer is mounted just above the fourth reaction wheel within the center

support truss. The magnetometer can be seen on its white breadboard in Figure 4-3. The

magnetometer is located in this position in order to reduce its translational motion while the

air bearing is rotating. Due to the laboratory environment, the magnetic field around the air

bearing is not constant. Reducing translational motion of the sensor helps to mitigate the

effects caused by an inconsistent magnetic field. The magnetometer does not translate if the

vehicle is rotating about the ABBF z axis. However, due to the fact that the magnetometer

is mounted above the center of rotation, it does translate if the vehicle rotates about the

ABBF x or y axes, though this movement is minimal since the vehicle is constrained to

nineteen degrees off nominal rotation in these two axes.
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(a) Component Plate One - SolidWorks (b) Component Plate One - Actual

(c) Component Plate Two - SolidWorks (d) Component Plate Two - Actual

(e) Component Plate Three - SolidWorks

Figure 4-6: Avionics

(f) Component Plate Three - Actual

Component Plates
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Each of the avionics and communication components listed above is connected via data

communication lines. Figure 4-7 shows a block diagram of the data connections between the

devices. This figure is similar to the electrical diagram given in Figure 4-5 but represents

communication lines rather than power lines. For a detailed look at the air bearing's avionics

connections, reference Appendix B for a complete testbed avionics wiring schematic.

Wireless Downlink to
Ground Station Receiver

USB Radio
Receiver

USB|

TTL

EncodIe EncoderOne TWO

1000 PPR
1000 PPR

Encoder
Three

1000 P

Figure 4-7: Air Bearing Communication Diagram

The Avionics stack uses several different communication protocols as can been seen in

the above figure. Though using one communication protocol would be ideal for simplicity,

the processors must use the communication protocol required by peripheral devices like

the IMU and motor controllers. The following bullet list gives a brief explanation of each

communication protocol used by the air bearing avionics system.
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* UART TTL - Universal asynchronous receiver/transmitter operating at transistor-

transistor logic (TTL) level. UART translates data from parallel to serial form for

transmission across the communication line. This particular serial transmitter uses

TTL level data, which consists of zero volts representing a digital zero bit, and five

volts representing a digital one bit. UART requires two data lines for communication;

one transmits serial data and the other receives serial data [17].

* SPI - Serial peripheral interface. SPI operates similarly to UART but allows for

communication between a master device and multiple slave devices through the same

communication port. SPI achieves this by using four lines for communication. The

two data lines are Master Out Slave IN (MOSI) and Master In Slave Out (MISO).

Unlike UART, SPI must provide a clock pulse to the slave device in sync with the

data being sent or received. The clock pulse travels on the Serial Clock line (SCLK).

The fourth line is the Slave Select line (SS). The master must have a slave select

line for each device using SPI communication. The master selects which device to

communicate with by setting the corresponding Slave Select line to a predetermined

voltage, usually zero volts. The master keeps the other Slave Select lines at five volts

which tells the other slave devices to ignore the communication [17].

* 12C - Inter-Integrated Circuit. 12C is another type of serial communication protocol

using only two lines for communication. 12C can also communicate with multiple

devices using the master, slave format. The first line is the Serial Clock line (SCLK)

just like the line used by SPI. The second line is the Serial Data Line (SDA), which

handles all data transmitted or received. 12C uses only one data transmission line by

sending start and stop bytes with each data transfer that define what is being sent,

who should receive the data, and what data is being requested [38].

* USB - Universal Serial Bus. USB uses serial communication in a 'black box' style.

Using generic connectors, USB allows two line serial communication between two

devices. USB also provides a five volt power line and a ground line, which can be used

to power the peripheral device.

e 1000 PPR - One Thousand Pulses Per Revolution. This is not a communication pro-

tocol but rather the type of data being received from the motor encoders as shown
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in Figure 4-7. The encoders produce a zero to five volt square wave at one thou-

sand cycles per revolution of each reaction wheel. This data is interpreted by the

Arduino processors to determine how far the wheel has traveled. Using time data, the

processors can also determine each reaction wheel's angular velocity.

The heart of the avionics system are the two Arduino Mega processors located on the

first component mounting plate as shown in Figure 4-6. These processors work together

to provide real time attitude estimation and control by taking inputs from the real time

clock module, IMU, magnetometer, motor encoders and each other, and then providing

control commands to the reaction wheels as well as outputting state information to the

ground station. The specific requirements of each Arduino will be discussed in Section 4.2.1

and 4.2.2. Table 4.6 lists several important specifications of the Arduino Mega processors.

The complete Arduino Mega specification sheet can be found at Arduino's website.1

Table 4.6: Arduino Mega Specifications

Operating Voltage 5V
Clock Speed 16 MHz
Flash Memory 128 KB
UART Ports 4
SPI Ports 1
I2C Ports 1
External Interrupts 6
PWM Output Pins 14
Analog Input Pins 16

The Arduinos have an internal time function, but this function is not accurate enough

to provide real time operation. Therefore, an external real time clock module designed and

built by Sparkfun Electronics is used to provide a real time clock input. The module uses

the 12C communication protocol and is powered via a five volt input. However, a battery

on-board the module powers the clock when the system is turned off. The battery can

power the clock for nine years before needing replacement according to the specification

sheet. The RTC module provides a square wave at 4.0 KHz to one of the Main Arduino's

external interrupt pins. By defining how many pulses must be received between control

cycles, the programmer can set the time step of the control cycle to within 0.0002 seconds.

lhttp://arduino.cc/en/Main/ArduinoBoardMega
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The Arduinos wirelessly communicate with the ground station computer via the USB

communication board, made by TruLink. The USB communication board transmits and

receives at frequencies between 3.1 and 4.8 GHz [4]. The receiver translates the wirelessly

received data into serial format for transmission along a standard USB 2.0 port. This is

very convenient because many devices communicate via USB or have conversion chips that

allow communication via USB. Overall, the USB communication board allows the ground

station computer to think it is hardwire connected to the Arduino Megas via a standard

USB cable.

4.1.4 Attitude Determination Sensors

The two attitude sensors on the air bearing are the IMU and the magnetometer. The other

feedback sensors are the four reaction wheel motor controllers. Though these sensors are

not used to directly measure attitude, their measurements are used to determine reaction

wheel speed, which is used in the estimation and control process. Therefore, all of these

sensors are important to producing an accurate state estimation and the correct control

inputs. The first sensor to be discussed is the IMU.

The three axis IMU is made by Analog Devices and has the specific part number ADIS

16365. The IMU communicates via an SPI port and can send a full data set at a maximum

rate of 819 Hertz, which is much higher than any control cycle that would be used by

the avionics system. The IMU is poled for data once per control cycle. The requested

measurements from the IMU are the angular rates in each of the three axes, and the linear

accelerations in each of the three axes. Though the IMU can be set to output angular rate

at up to plus or minus 300 degrees per second, it is set to output rate at plus or minus

seventy-five degrees per second since even this lowest setting is a higher rate than would

be achieved by the air bearing. Using the lowest rate bandwidth, the IMU provides the

highest precision at 0.0125 degrees per second resolution. The measurement from the IMU

is given in degrees per second and immediately converted to radians per second for use

in the estimation and control algorithm. The linear accelerometers measure acceleration

in units of g's (9.81m/s 2). The accelerometers have only one setting and can measure up

to plus or minus eighteen g's at a resolution of 3.38 mg's. Because Earth's gravity is the

largest contributor of linear acceleration on the air bearing, the accelerometers only measure

between plus or minus one g. The six measurements from the IMU are used to update the
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state estimate once per control cycle. The complete specification sheet for the IMU can be

found at Analog Device's website. 2

The three axis magnetometer is known as the MicroMag3 and is made by PNI Corpo-

ration. The magnetometer also communicates using SPI protocol and can send a full data

set at up to 2000 Hertz. Just like the IMU, the magnetometer is poled for data once per

control cycle. The measurement consists of magnetic field strength readings in each of the

three axes. The magnetic field strength can be read at up to plus or minus 1100 micro

Tesla before the sensors saturate. The magnetometer provides measurement resolution of

0.032 micro Tesla. The three measurements from the magnetometer are combined with the

IMU measurements to update the air bearing state estimate once per control cycle. The

complete MicroMag3 data sheet can be found on Sparkfun.com.3

The four motor encoders are bearing style, three-channel encoders and are made by

Motion Control Group, the same company that makes the reaction wheels. The encoders

output a five volt square wave at 1000 cycles per revolution of the wheel. Though the

Arduinos take only one pulse train as an input, each encoder has a total of four square wave

outputs that can be read by the Arduinos. In addition to the single square wave that is used

as an input to the Arduino, there is a second square wave that is the negative of the first.

This can be used to reduce signal noise by comparing the inputs from these two signals.

The additional two inputs are made up of a square wave and its negative that are ninety

degrees out of phase with the first set of square waves. These inputs can be compared with

the first set to determine reaction wheel direction in addition to angular rate. These inputs

would be beneficial to the state estimator but due to processor limitations, only one input

per motor encoder can be handled. Therefore, only reaction wheel speed and not direction

can be measured. The complete data sheet for the motor encoders can be found at Motion

Control Group's website.4

The driving requirement for using two Arduino processors is measuring the motor en-

coders while maintaining real time processing. The motor encoders are measured using

interrupt pins that stop the processor at each new square wave input to increment a counter

and keep up with the number of square waves that are measured. This process must be

2http://www.analog.com/en/mems/imu/adis16365/products/product.html
3http://www.sparkfun.com/datasheets/Sensors/MicroMag3\/2OData\%2OSheet.pdf
4http://www.ametektip.com/index.php?option=com-catalog\&view=models\&which=catalogs\&id=

369
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completed for each of the four wheels. At a maximum angular rate of approximately thirty

revolutions per second, each encoder will output 30,000 square waves which equates to

30,000 processor interrupts. For four reaction wheels, there could be a maximum of 120,000

interrupts per second, which makes running a real time algorithm in addition to the in-

terrupts difficult. Therefore, the Auxiliary Arduino is added with a primary purpose of

taking inputs from the motor encoders and relaying reaction wheel commands from the

Main Arduino to the motor controllers. The algorithm necessary to receive reaction wheel

commands from the Main Arduino and relay them to the motor controllers is relatively

simple and can be accomplished once per cycle despite the encoder interrupts. Once the

Auxiliary Arduino relays reaction wheel commands to the motor controllers, it sends motor

encoder information back to the Main Arduino, which is running the control algorithm in

real time without being paused for motor encoder interrupts.

4.1.5 Attitude Control Actuators

The air bearing's attitude control actuators consist of two Pololu Trex dual motor controllers

that each drive two reaction wheels. Three of the four wheels are oriented in an orthogonal

set symmetric about the ABBF z axis to simulate a common small satellite attitude control

configuration. The fourth reaction wheel is mounted in alignment with the ABBF z axis

so that its axis of rotation has equal projections in the rotation axes of the other three

orthogonal reaction wheels, which allows for reaction wheel redundancy and failure testing

as well as allowing for the development of angular momentum storage techniques.

The Pololu Trex motor controllers operate at the voltage of the power source; fourteen

volts in this case. Each motor controller receives speed and direction commands for both

motors in packetized serial format via UART TTL protocol, and sets the voltage across the

two motor leads for each motor depending on the received command. The motor controllers

can discretize the voltage from zero to maximum (fourteen volts) in 127 settings. Therefore,

using the current power source, the motor controllers control voltage with a resolution of

0.11 volts. The motor controllers can switch the polarity of the motor leads and provide

the same voltage resolution in the opposite direction. Voltage polarity is set by the reaction

wheel direction command and voltage level is set by the reaction wheel speed command.

The motor controllers can also brake the motors to zero velocity by shorting the motor

leads, which causes resistance to motor rotation by eliminating a path for the electrical
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current induced by the motor's rotation to escape. The specification sheet for the Pololu

Trex motor controllers can be found at Pololu's website. 5

The reaction wheel motors are made by Motion Control Group and are rated (based on

the specification sheet) to provide continuous torque of 0.147 Nm and a peak rated torque

of 0.295 Nm. Maximum voltage according to the specification sheet is sixty volts, which is

significantly higher than the fourteen volt input from the batteries. The no load maximum

speed is 628 radians per second, which is also significantly higher than the achieved max-

imum speed on the air bearing of 194 radians per second, due to the lower voltage along

with the increased inertia from to the attached flywheel. Other motor characteristics from

the specification sheet are previously listed in Table 3.2 for use in developing the reaction

wheel equations of motion. The complete motor specification sheet can be found at Motion

Control Group's website.6

The flywheels attached to each of the four reaction wheels are designed and machined

the same. Figure 4-8(a) gives a SolidWorks rendering of the flywheel and Figure 4-8(b)

gives a rendering of the wheel as attached to the motor and reaction wheel support frame.

The flywheels are relatively large compared to reaction wheels that might be used on ESPA

class spacecraft. However, disturbance torques in the space environment have much less

magnitude than the disturbance torques faced by the air bearing in operation. Therefore,

the reaction wheels must be larger to compensate for these torques.

5http://www.pololu.com/catalog/product/777
6http ://www. ametektip. com/index .php?option=com\_-catalog\&amp; view=rmodels&amp ; which=

catalogs\&amp; id=399\&amp; Itemid=107\&amp;lang=en
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(a) Flywheel with Dimensions (b) Reaction Wheel Assembly with Frame

Figure 4-8: Air Bearing Reaction Wheel Model

Table 4.7 lists the dimensions of the flywheel labeled in the figure above [20]. The

dimensions are found by measuring the physical wheel rather than using the SolidWorks

model for accuracy in determining inertial characteristics.

Table 4.7: Flywheel Mass and Dimensions

Description Label Value
Mass mfw 2.304 kg
Outer Radius ri 73.57 mm
Slot Outer Radius r 2  45.77 mm
Slot Inner Radius r3 17.54 mm
Inner Shaft Radius r4 8.26 mm
Disc Height hi 23.01 mm
Slot Inner Height h2 16.51 mm

The volume of the flywheel can be found using Equation 4.6 and the dimensions listed

above. The volume is necessary in finding the density of the flywheel as shown in Equa-

tion 4.7 [20].
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Vf2 = ir[hir2 - h2 [r? - r2] - hir2] = 2.942 x 10-4 m 3  (4.6)

Pfw - f - 7831kg/m 3  (4.7)
Vfw

Using density and the dimensions of the flywheel given in Table 4.7, the second moment

of inertia for the flywheel can be found using Equation 4.8 [20]. From the flywheel inertia

and the inertia of the motor given on its specification sheet, the total inertia of the reaction

wheel can be found and is given below in Equation 4.9.

f rpf [hi[r 4 - r] + (hi - h 2 )[r4 - r] + hi[r 4 - r ]] = 7.224 x 10-3 kgm 2  (4.8)

1a = 1f w + Imotor = 0.00725 kgm 2  (4.9)

The total angular momentum storage capability of each reaction wheel based on the

maximum angular rate and inertia of the wheel is given below in Equation 4.10.

Hrw max = Ianmax = 1.407 Nms (4.10)

The four air bearing reaction wheels provide the torque and angular momentum storage

capability necessary to control the air bearing for enough time to complete a range of

ADCS tests despite the disturbance torques associated with a laboratory environment.

Furthermore, the four wheels are configured to allow for a series of tests on operating the

wheels themselves to include angular momentum transfer techniques, orthogonal reaction

wheel control, reaction wheel redundancy, and reaction wheel failure analysis.

4.1.6 Ground Station

The ground station can be any thirty-two bit computer capable of connecting with the

TruLink wireless USB adapter, which connects using a standard USB port. Included soft-

ware is necessary to install the drivers required to interface with the wireless USB adapter,

and this software is stored with the current ground station desktop computer. The wireless



USB adapter has an advertised range of thirty feet; however the current ground station

computer is located within six feet of the USB receiver on the air bearing.

The ground station computer must also be able to install and run the Arduino's cod-

ing environment and compiler, known as an Integrated Development Environment (IDE).

The IDE is regularly updated by the manufacturers of the Arduino and will automatically

recognize when new versions are released and suggest updating, which is beneficial. The

IDE includes a series of functions and libraries that can be used to simplify the coding

process, and new versions of the environment include additional functions. Instructions for

downloading the Arduino's IDE are included in the air bearing user's manual.

With the avionics stack powered on and the Arduino coding environment open, the

Arduino boards can be selected based on which communication port they are connected.

The ports are arbitrarily numbered by the ground station computer so some investigation

may be required to determine which communication port is associated with which Arduino.

In the normal configuration, there will be two Arduinos connected to the ground station

computer via USB comm ports. Using the coding environment, new code can be wirelessly

uploaded to either Arduino at the click of a button, and information sent back via the

wireless serial port can be viewed once received and stored in batch files after the test is

completed.

Batch files from test scenarios can be analyzed at the ground station using Microsoft

Excel and MATLAB. Several MATLAB script files have been developed for general data

analysis, and if these scripts do not meet the needs of the test, the test developer can

easily write new MATLAB scripts to evaluate data collected in the batch files. Overall, the

ground station computer functions as the avionics interface to the air bearing testbed. The

Arduinos can be reprogrammed from the ground station before a test, data can be collected

during a test, and analyzed afterwards.

4.2 Testbed Software Development

Provided with the testbed is a baseline set of software for the Main and Auxiliary Arduinos.

The software is meant to provide a foundation that can be built upon to meet the needs

of future test scenarios. The provided software is designed to run estimation and control

algorithms exactly as they are modeled in the air bearing testbed Simulink simulation
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described in Chapter 3. If commanded angular orientation and rate profiles are all that

need to be changed for a given test, modification to the provided software will be minimal.

However, if a new sensor or actuator is added to the testbed, software modification will be

more complex.

Arduinos use a C++ based language which is written in the Java based IDE. The

IDE allows Arduino code to be written, compiled, and uploaded to the Arduino using one

program. The IDE also has a serial window that allows data to stream back from the

Arduino and be collected using the same program. As described in the Ground Station

section, the IDE is provided by the Arduino's manufacturer and can be downloaded from

their website at no cost.

Due to the hardware interrupt limitations discussed in the Attitude Determination Sen-

sors section, the air bearing avionics stack uses two Arduino Megas to run the estimation

and control algorithm. The primary functions of the baseline software that is provided for

both the Main and Auxiliary Arduinos will be described below.

4.2.1 Main Arduino

The Main Arduino (MAR) runs the main attitude estimation and control algorithm. During

each control loop, the MAR requests and receives inputs from the IMU and Magnetometer as

well as motor encoder inputs from the Auxiliary Arduino (AAR). The MAR then propagates

a model of the air bearing's state, finds the best estimate of the air bearing's state by running

an EKF, propagates the commanded air bearing state, calculates commanded reaction wheel

velocities using the same suite of control algorithms described in the Control Module section

in the simulation development chapter, and sends reaction wheel velocity commands to the

AAR. The MAR then sends requested data to the ground station before completing the

estimation and control loop.

The provided software for the MAR is divided into four code files that are put together

by the IDE's compiler. Each of these four files are represented by tabs in the IDE making

it easy to view and edit each code file individually. The four code files for the MAR are

briefly described in the bullet list below.
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e mega..main.pde - This is the primary code file and calls the other three files to be

included once compiled. The file has a '.pde' file type and can be opened using the

Arduino IDE.

e functions.h - This header file includes all of the non-mathematic functions required by

the mega-main.pde code file. Examples of these functions are the SPI communication

functions for the IMU and magnetometer.

e matrix.h - This header file includes all the mathematical functions required by the

estimation and control algorithm.

o init.h - This header file includes all of the initial condition variables that can be

changed by the user. These variables include initial reaction wheel velocities and

control algorithm gains.

Because the mega..main.pde file calls functions and variables from each of the header

files, the header files will be described first. Beginning from the bottom of the bullet

list, the init.h file simply defines a series of variables for use in the control algorithm.

These variables include initial reaction wheel rates, initial air bearing state, and several

key estimation and control matrices. The entire init.h file is developed by a MATLAB

script called test-init.m, which is designed to take inputs from the user like initial reaction

wheel speed and estimation/control algorithm changes. The MATLAB script calculates the

required changes in the variables included in the init.h file, and then creates a new init.h file

to incorporate the changes made by the user. The user can then replace the existing init.h

file with the new one that includes the updates relating to the desired initial conditions. The

process of using the MATLAB script not only makes defining initial conditions easier, but

also makes the initial condition input method to the physical air bearing code practically

the same as the input method to the Simulink simulation. Therefore, the same set of initial

conditions can be used to run the Simulink simulation as well as the physical air bearing.

The process for creating the init.h file using the test.init.m MATLAB script and replacing

the previous init.h file in the Arduino's IDE will be described in detail in Section A.2.3 of

the testbed user's manual given in Appendix A. Included in Section C.1 of Appendix C

is a copy of the provided init.h code file. This copy of the init.h file is the output of the

provided copy of the test-init.m MATLAB script in Section C.6 of Appendix C. Though
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the provided init.h file is operational, the user should set the desired initial conditions in

the test-init.m MATLAB script and generate an updated version of the init.h header file

for use.

The matrix.h file includes all the mathematical functions that are used by the estimation

and control algorithm that are not already included in the Arduino's coding environment.

Most of these functions are vector and matrix functions since only scalar functions are

included in the environment. The functions include three by three matrix multiplication,

three by one vector cross product, three by one vector magnitude, and a numerical ap-

proximation of the the three by three matrix exponential. The numerical approximation

of the matrix exponential is the most complex of the functions but is a requirement in

determining an attitude estimate from the IMU accelerometers and magnetometer as de-

scribed in Section 3.2.3. Equation 4.11 gives the numerical approximation used to find the

matrix exponential [42]. A copy of the provided matrix.h file is included in Section C.2 of

Appendix C.

8

eA ;Z8Ak (4.11)
i=o

The functions.h file includes all additional functions called by mega-main.pde that are

not included in the matrix.h file. These functions include the read and write functions

associated with the IMU as well as the functions to read magnetometer measurements.

This file also includes the functions used to send data back to the ground station computer

during testing. The functions used to find the reference magnetic field vector and the

function to set the initial reaction wheel velocity during the setup phase are also in this file.

A copy of the provided functions.h file is included in Section C.3 of Appendix C.

The mega-main.pde file is broken into sections to help the user understand the algo-

rithm's operation and aid in modification if necessary. The following numerical list gives

each section of the code and a description about the section's operation. The sections

listed below are labeled exactly the same in the provided software. A copy of the complete

provided mega-main.pde file is included in Section C.4 of Appendix C.

1. Set Desired Outputs - The first section is where the user decides what data is to

be sent back to the ground station during the test. Almost every variable in the

estimation and control algorithm is available for output. In this section, the user can
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also decide how to format spacing between data for clarity. For all variables chosen to

be output during testing, the program will send back a header line during the setup

phase that labels each column of data. Besides visually monitoring the air bearing

during testing, the data sent to the ground station computer is the only information

stored during each test.

2. Initialize Required Variables and Header Files - In this section, the three header files

described above are included in the code. All variables used in the algorithm that are

not previously defined in the header files are included as well.

3. Initialize Estimation/Control Loop - The setup loop is run in this section. The loop

runs one time and initializes many of the Main Arduino's interfaces. The setup loop

opens the UART and 12C communication ports and defines their communication rate.

The loop also defines the operation of each of the digital input/output (DIO) pins.

The setup loop then poles the magnetometer for data to determine the reference

magnetic field measurement for use throughout the remainder of the current test, and

commands the reaction wheels to their required angular velocity before beginning the

estimation/control algorithm. The setup loop requires approximately five seconds to

determine a reference magnetic field. If the reaction wheels are given a nonzero initial

angular velocity command, the setup loop pauses for ten seconds to allow the wheels

to reach steady state before beginning the control loop. If the reaction wheel initial

angular velocity is set to zero, the ten second pause is skipped.

4. Begin Estimation/Control Loop - This section highlights the beginning of the code

that runs every time step. The first thing to be defined at the beginning of the

control loop is the current time and the change in time since the last control cycle.

The program begins the control loop when the counter incrementing at 4 KHz hits

the desired number. This number is set by the user to determine the time step of the

estimation/control algorithm.

5. Write Commanded Reaction Wheel Angular Rate to Motor Controllers - This section

sends the reaction wheel speed and direction commands determined at the end of the

previous cycle to the AAR. The reaction wheel commands are sent at the beginning

of the control cycle because the AAR is triggered to begin its loop when it receives
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data from the MAR. In this way, the MAR and AAR are operating in parallel. The

AAR completes its loop by sending motor encoder information back to the MAR,

which will read the data at the end of the estimation/control algorithm. Reference

Figure 4-9 for clarity on the parallel operation of the two Arduinos.

6. Read IMU - This section calls the functions required to take a measurement from the

IMU. The measurement includes the three angular rate values as well as the three

linear acceleration values. These six measurements are stored for use in the EKF.

7. Read Magnetometer - This section calls the functions required to take a measurement

from the magnetometer. The measurement includes the three magnetic field values

and is stored for use in the EKF.

8. Commanded Angular Orientation and Commanded Angular Rate - This section is

where the user defines the commanded angular orientation and rate of the air bear-

ing for the extent of the test scenario. Just as with the Command Module in the

simulation, the user can define commanded angular rate for all three ABBF axes

and integrate the rate to obtain commanded angular orientation, or define angular

orientation and take the derivative to obtain the rate.

9. Extended Kalman Filter - The EKF section operates just as the Extended Kalman

Filter Block in the simulation. A linearized state space model of the reaction wheels

and air bearing is propagated in this section, and the measurements from the IMU and

magnetometer are combined with the propagated state model to produce an estimate

of the current state to be compared with the commanded state defined above. This

block is computationally expensive because it requires many of the matrix functions

in the matrix.h file including the matrix exponential function.

10. Control Law - This section also operates just like its counterpart in the simulation.

A feedforward control algorithm is used to determine commanded reaction wheel an-

gular acceleration from the commanded air bearing state and reaction wheel velocity.

The feedforward reaction wheel commanded acceleration is added to the commanded

acceleration from the LQR to determine the best reaction wheel commanded acceler-

ation.
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11. Determine Reaction Wheel Angular Rate from Motor Encoders - This section analyzes

raw motor encoder data received from the AAR to determine the measured reaction

wheel speed of all four reaction wheels in radians per second.

12. Reaction Wheel Motor Controller - This section takes the commanded reaction wheel

rate from the control law and converts it into the correct set of packets to be sent

to the motor controllers via the AAR. This section also incorporates the closed loop

braking algorithm that uses reaction wheel rate feedback from the motor encoders to

determine if the wheels are spinning faster than commanded and slows them down if

necessary.

13. Print Results - This section includes the function calls to send user requested data to

the ground station at the end of each estimation/control cycle.

14. Read Encoder Information from Auxiliary Arduino - The last step in the estima-

tion/control loop is the read the motor encoder information sent by the AAR. The

AAR requires less time to complete its loop and send the encoder data, so the data

is available to be read by the MAR once it reaches the end of its loop.
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Figure 4-9: Main and Auxiliary Arduino Control Cycle Diagram

Once each step in the estimation/control loop is complete, the MAR waits and continues

to increment the time counter. Once the time counter reaches the user defined value, the

MAR enters the estimation/control loop again, and repeats steps four through fourteen

above. The MAR continues running through the loop at each time step until it is reset or

powered off and on again.

4.2.2 Auxiliary Arduino

The Auxiliary Arduino has fewer responsibilities in its loop than the Main Arduino. The

primary reason for having minimal code in the AAR's loop is to set aside processor time

to handle the large number of interrupts from the motor encoders. As previously described

in the Attitude Determination Sensors section above, the motor encoders can interrupt the

processor as much as 120,000 times per second. The interrupts occur continuously so the

AAR's code should be minimal and not dependent on real time knowledge.
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The provided software for the AAR is responsible for reading the interrupts from the four

motor encoders and incrementing a counter after each interrupt to determine the number

of pulses received from each encoder. Once during each control cycle, the AAR sends the

current encoder counter value for each of the four motor encoders back to the MAR. The

MAR is responsible for interpreting the encoder values and determining reaction wheel

velocity since the velocity calculation requires real time knowledge. The AAR's second

primary responsibility is the relay reaction wheel velocity commands from the MAR to the

two motor controllers.

The provided software for the AAR is included in one file called mega-aux.pde. The

following numerical list describes the different sections of the AAR code. The sections are

labeled exactly as they are in the megaaux.pde file. A copy of the complete provided

mega.aux.pde file is included in Section C.5 of Appendix C.

1. Initialize Required Variables and Interrupt Pins - This section defines the variables

used throughout the program as well as the pins used for motor encoder inputs.

2. Initialize Auxiliary Loop - This section opens all of the serial ports required for the

AAR and defines their communication rate. All four hardware serial ports on the

AAR are used. One port is used to communicate with the MAR, two more are used

to communicate with the two motor controllers, and the fourth is used to communicate

with the ground station computer. This section also sets the motor encoder input pins

to function as interrupts.

3. Begin Auxiliary Loop - This section defines the beginning of the AAR's repeated loop.

The AAR waits until it receives reaction wheel commands from the MAR via its serial

port. Once these commands are received, the AAR enters its loop.

4. Write Motor Encoder Values to Main Arduino - Immediately after entering the loop,

the AAR sends the current motor encoder information back to the MAR. Sending

data requires time so the AAR sends the data first so it will be available to be read by

the MAR when the MAR looks for the data at the end of its estimation and control

loop.

5. Read Reaction Wheel Commands From Main Arduino - In this section, the AAR

reads the reaction wheel data sent by the MAR and stores it in labeled variables.
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6. Write Reaction Wheel Commands to Motor Controllers - The AAR then sends the

data for the first two reaction wheels to motor controller number one, and the data for

the second two reaction wheels to motor controller number two. This step completes

the AAR's primary loop.

7. Define Motor Encoder Interrupt Functions - This section defines the functions that

must be performed when a motor encoder interrupt occurs. These functions simply

increment a counter after each motor encoder interrupt.

Once the AAR's primary loop is complete, it waits until it receives reaction wheel

commands from the MAR before reentering the loop and completing steps three through

six from the list above. Even when the processor is not running its primary loop, it is

listening for interrupts from the motor encoders and incrementing the respective counters

when interrupts occur.

4.2.3 Arduino Performance

In order for the avionics system to function properly, the Arduinos must first be able to

store the complied code in their on-board flash memory, and they must be able to complete

their software loops within the discrete time step set by the user. The Arduino Megas have

128 KB of flash memory, though some of this memory is required for formatting. With

formating, each Arduino can store 126,976 bytes of information in flash memory. Table 4.8

lists the memory required to store the MAR's and AAR's provided software.

Table 4.8: Arduino Memory Requirements

Software Size Percent of Total
Main Arduino 52782 41.57%
Auxiliary Arduino 5396 4.25%

As can be seen in the above table, both the MAR and AAR are well within their memory

storage limitations using the provided software. The next requirement is that the Arduinos

complete their respective loops in less time than the user defined time step. The default

time step used for air bearing validation testing described in Chapter 5 is 0.05 seconds,

which equates to a twenty Hertz control cycle. Because the time step is defined by choosing
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how many interrupts must occur from the 4096 Hz RTC module input between cycles, the

time step must be given as an integer divided by 4096. The closest integer that solves this

equation is 205. This process is given below in Equation 4.12.

205
0.05seconds ~ = 0.05049seconds (4.12)

4096

In order to ensure both Arduinos are capable of completing their control cycles within

the required time step, they are tested in action using an oscilloscope. The test procedure

begins by using a previously unassigned DIO pin on each Arduino. Immediately after

entering the primary loop, the DIO pin is written to high voltage. The control loop then

runs as usual and immediately before exiting the loop, the same DIO pin is written to

ground. By placing an LED between the DIO pin and ground and placing an oscilloscope

connection across the LED leads, the amount of time required to run the primary loop

can be viewed on the oscilloscope output as a recurring pulse with a width that is some

percentage of the recurrence period. For the normal control frequency of twenty Hertz,

the recurrence period should be approximately 0.05 seconds. If the pulse representing the

Arduino's run time per loop is a constant high voltage, the Arduino is unable to complete

its loop within the time step provided and reenters the loop immediately upon completion

because it is late. The estimation and control algorithm requires the MAR to run at a

constant predetermined time step so reducing the time step to a value that is less than the

time required for the Arduino to complete a control loop is unacceptable.
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Figure 4-10 shows the results of the MAR timing test for a control cycle of twenty

Hertz. The horizontal axis represents time and the vertical dotted lines are separated by

five milliseconds. The control cycle is represented by the green line, and begins when the

green line steps from zero volts to approximately 0.5 volts. Based on these results, the

provided estimation and control loop requires forty-five milliseconds to complete, which is

ninety percent of the available fifty millisecond time step. Notice that the next control

cycle starts fifty milliseconds after the start of the first control cycle. At a control frequency

of twenty Hertz, the estimation and control loop cannot be significantly expanded. If

additional code must be written, the control frequency must be reduced to accommodate

an extended runtime.

[ T' IF; T .. 20OmU 1

Figure 4-10: Main Arduino Program Runtime
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In order to represent the process used to maintain real time operation, a second LED is

pulsed each time the RTC module interrupts the MAR at 4096 Hz. Based on the interrupt

frequency, the pulses should be counted once every 244 microseconds. Figure 4-11 shows

the estimation and control loop in green and the pulses from the RTC module in blue. In

this figure, the vertical dotted lines are separated by 100 microseconds. Though the spacing

cannot be measured precisely, the blue pulses appear approximately 240 microseconds apart.

Because the time step is 0.05 seconds, which equates to 205 pulses out of 4096 pulses per

second as shown in Equation 4.12, the estimation and control loop begins just after the

205th RTC module interrupt is recorded.

T' D 100 .Ous/. 5 172mJ
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Figure 4-11: Main Arduino Program Start at Clock Pulse
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As previously discussed, the AAR is triggered to run by inputs from the MAR during

each control cycle. Figure 4-12 shows the MAR loop (green) and the AAR loop (blue)

running in parallel. The figure is scaled just like Figure 4-10 with the vertical dotted lines

separated by five milliseconds. Approximately one millisecond after entering the estimation

and control loop, the MAR triggers the AAR to enter its loop by sending it reaction wheel

commands. The AAR completes its loop in approximately three milliseconds. Though the

AAR's loop runtime is significantly less than the MAR's runtime, the AAR must still listen

for motor encoder interrupts, which are not represented in this figure.

IT'D I5.000ms

Figure 4-12: Main Arduino and Auxiliary Arduino Runtime

The pair of Arduinos work together to provide the processing power necessary to operate

the ADCS testbed. Though they are operating at close to their maximum performance using

the provided software and running at a twenty Hertz control cycle, they are flexible enough

to handle significant changes in the size of the code running on both the MAR and the

AAR, and the time step, which is easily adjusted by the user.
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4.3 External Magnetic Field Generator

The ADCS testbed has a one axis external magnetic field generator that is used to produce

a relatively consistent magnetic field in an otherwise noisy magnetic environment within

the laboratory. The external magnetic field generator creates a field several times stronger

than the ambient magnetic field, and the field can be used by the magnetometer as a

means of attitude determination, and by a torque coil or torque rod as a means of attitude

control. The increased strength of the generated magnetic field will allow the torque coil or

torque rod to produce a high enough torque to overcome the disturbance torques within the

laboratory. A magnetic torque device acting on Earth's ambient magnetic field would likely

not be able to produce the torque required to overcome air bearing disturbance torques.

Figure 4-13: External Magnetic Field Generator
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The external magnetic field generator is made up of two wire coils mounted on the

external equipment frame surrounding the air bearing platform. Figure 4-13 points out the

location of the coils with respect to the air bearing. The coils are mounted concentrically

and perpendicular to the FIR y axis. By controlling the magnitude and direction of current

flowing through the coils, which are wired in series with each other, a magnetic field vector

of adjustable magnitude can be produced in either the positive or negative FIR y axis.

Table 4.9 lists the specifications of the external magnetic field generator.

Table 4.9: External Magnetic Field Generator Specifications

Coil Radius 55 cm
Separation Distance 154 cm
Coil Turns 30
Wire Gauge 4
Normal Current 30 Amps
Normal Voltage 6 Volts

A uniform magnetic field environment around the air bearing would be ideal for attitude

determination and control using magnetic equipment. However, the external magnetic field

generator is not capable of providing a uniform field. Producing such a field requires the

use of coils whose radius is equal to their distance apart from each other. Such coils are

formally known as Helmholtz coils because of their unique magnetic field characteristics.

To create a Helmholtz coil set using the same mounting frame, the coils would each require

a radius of 1.54 meters, which is not feasible [23].

Though the current set of coils do not produce a uniform field across their full diameter,

they are capable of creating a magnetic field vector perpendicular to the coils that passes

through the center point of each coil. By mounting the magnetometer or magnetic torque

device near the center of the air bearing to reduce translational motion during air bearing

rotation, and mounting the external magnetic field generator such that the vector passing

through the center of the coils also passes as close to the air bearing magnetic devices as

possible, the error due to a non-uniform magnetic field can be reduced to an acceptable

level. As seen in Figure 4-13, the magnetometer is mounted along the magnetic field vector

produced by the coils. Due to the magnetometer's location on the air bearing, it does not

translate during rotation about the ABBF z axis. If the air bearing rotates about the ABBF
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x or y axes, the magnetometer will translate, but rotation about the ABBF x and y axes

is constrained so the magnetometer will never translate far from the magnetic field vector

between the center of the two coils. Characterization of the ambient magnetic field and the

external magnetic field generator will be covered in Chapter 5.

4.4 SPHERES Overview

The ADCS testbed is designed to be able to integrate with the SPHERES testbed developed

in the Space Systems Laboratory. The SPHERES testbed is a versatile ADCS testing

platform that can be used to design and test ADCS systems for individual satellites as well

as a close proximity satellite formation. Each SPHERES satellite uses a sonar metrology

system to measure its inertial position. The satellite has twenty-four microphones located

around its structure that listen for ultrasonic pulses produced by a series of ultrasonic

emitters (known as beacons) located on the edges of the test volume. The satellite sends an

infrared pulse that commands the beacons to produce an ultrasonic pulse one after another.

By knowing where the beacon is located, when the beacon is supposed to emit a pulse,

and measuring when the pulse is actually received by the microphones, the SPHERES

satellite can determine its distance away from the beacon. By repeating this process with

other beacons around the test volume, the SPHERES satellite can determine its position

and angular orientation within the volume. The volume cannot exceed roughly ten cubic

meters due to limitations in accurately measuring the ultrasonic pulses over larger distances.

The SPHERES satellite also uses rate gyroscopes and linear accelerometers to support its

attitude estimation algorithm. For attitude control, the SPHERES satellite has twelve cold

gas thrusters that use compressed carbon dioxide gas as fuel. Two thrusters are mounted

to produce pure torque in both the positive and negative rotational directions of all three

orthogonal axes. In this way, the twelve thrusters provide complete attitude control [47].

A single SPHERES satellite can be mounted on top of the center support structure of

the air bearing. Adding a SPHERES satellite to the air bearing testbed can significantly

expand the functionality of the combined ADCS testbed system. The satellite can operate

independently of the air bearing's avionics system and provide its own attitude estimate

to the ground station computer for comparison with the air bearing's attitude estimate.

This process could provide a means to test attitude estimation algorithms by using the
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SPHERES' attitude estimate as a truth measurement since the SPHERES' attitude esti-

mation system has been verified to a certain degree of accuracy. The SPHERES satellite

can also be programmed to provide known external torques that could simulate external

disturbance torques on the system that must be accounted for by the air bearing's attitude

control system. With software updates, the SPHERES satellite can be integrated into the

air bearing's estimation and control algorithm using its serial communication expansion

port. The SPHERES satellite could provide state measurements to the main Arduino for

use in the EKF, and the main Arduino could assign control torques to the SPHERES'

thrusters during each control cycle. Information could be sent back to the ground station

either by the SPHERES' wireless communication system, the air bearing's wireless USB

system, or both.

Currently, the air bearing structure is configured to support a SPHERES satellite with a

mass simulator in place of the satellite when it is being used elsewhere. The ground station

computer is configured to communicate with the SPHERES satellite independently of the

air bearing. The SPHERES satellite can be reprogrammed by the ground station computer

and the computer can receive data from the satellite during testing. The green external

component frame has mounting brackets for five metrology beacons, though the beacons

themselves must be shared by other SPHERES test facilities. The provided software for

the MAR and AAR do not include the option to communicate with a SPHERES satellite

via a serial communication port, though the MAR has sufficient flash memory available to

incorporate SPHERES communication software in the future. Even without direct com-

munication with the air bearing's avionics system and the lack of beacons on the external

frame, the SPHERES satellite can still provide a reasonable attitude estimate using its rate

gyros and linear accelerometers, which can be used to validate attitude estimation software

running on the air bearing's avionics system.

For more information about the SPHERES ADCS testbed please reference Dr. Alvar

Saenz-Otero's Ph.D. thesis [47]. In order to set up and operate the SPHERES testbed, please

reference the SPHERES user's manual for configuring a computer for communication with

SPHERES as well as maintaining and operating the hardware [32].
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4.5 Testbed Assumptions and Limitations

The ADCS Testbed is a valuable tool capable of verifying the operation of physical ADCS

components as well as validating an integrated ADCS system consisting of hardware com-

ponents and software algorithms. However, the testbed is subject to the disturbances as-

sociated with operating within a laboratory. The air bearing simulates the reduced gravity

and friction environment of space while operating in a one g environment at sea level. In

order to simulate reduced gravity, the air bearing's center of mass must be collocated with

its center of rotation. Though there are several methods for adjusting the center of mass

as previously described, the two points will never be exactly aligned, and their separation

distance defines the disturbance torque due to gravity on the system. Even with fine ad-

justment of the center of mass, gravity torque is the most significant disturbance torque

affecting the air bearing during testing. The air bearing operates by floating on a cushion

of compressed air, which reduces friction between the air bearing and its support column.

Though reduced, friction is not eliminated, which accounts for a second disturbance torque

on the vehicle. The third significant disturbance torque is damping due to Earth's atmo-

sphere at sea level. The air bearing operates in an atmosphere many orders of magnitude

more dense than the space environment, and the increased drag due to the sea level at-

mosphere will dampen air bearing motion much faster than a satellite with similar inertial

properties operating in space.

The air bearing is also subject to low amplitude, high frequency vibration caused by the

high pressure air floating the vehicle above the support column. The air pressure must be

high enough to float the vehicle above the support column because physical contact with

the column can damage the rotating hemisphere. However, if the air pressure is too high, it

causes an oscillating effect where the high pressure air increases the vehicle's height above

the support column to allow the pressurized air to escape, which causes the vehicle to be too

high. The vehicle then falls back down and is caught by the compressed air and the process

repeats. This up and down motion is low amplitude and cannot be seen, but the motion

induces a vibration that can be felt throughout the vehicle. Many ADCS tests may not

be affected by the vibration, but some precision pointing tests like optical control systems

might require an isolation mount to mitigate this vibration. The vibration can be reduced

by tuning the air pressure based on the mass of the vehicle. However, the test designer
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must be careful not to reduce the pressure to the point where the air bearing contacts the

support column.

One of the largest limitations to operating in the laboratory environment is that the

air bearing is not capable of providing full rotation about all three orthogonal axes. The

air bearing can only rotate a total of thirty-eight degrees in the FIR x and y axes. This

limitation means that full ADCS CONOPs tests in one test scenario are usually not feasible.

However, with clever test design, almost any ADCS maneuver can be tested using several

test scenarios in succession.

The testbed's avionics system is capable of testing almost any ADCS software algorithm

planned for use on small satellites. However, due to the specific requirements of the Arduino

processors as well as the satellite flight processors, copying complete code from the testbed

for use on flight processors is unlikely to work. Some portions of the testbed software might

be transferable with minor changes, but any copying of code must be done carefully to

prevent bugs arising in the flight software.

The ADCS testbed is subject to limitations like increased disturbance torques, con-

strained rotational motion, and software compatibility. Though these limitations affect the

functionality of the testbed, as long as they are accounted for, the air bearing can be used

as a powerful tool for verifying and validating ADCS equipment.
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Chapter 5

ADCS Testbed Analysis

The ADCS Testbed will be a valuable tool for both satellite developers and control theory

students. However, the combined simulation and rotational air bearing testbed must first be

tested itself to verify that the system operates as expected. Only after testbed component

verification and system validation can the results from the testbed be used to verify and

validate the operation of other ADCS components and algorithms. This chapter will focus

on characterization of the ADCS components used in the baseline air bearing configuration

as well as testing the integrated air bearing system. Once validated, the air bearing will be

used to test an ADCS CONOPs scenario for the MicroMAS cubesat being developed within

the Space Systems Laboratory.

5.1 Sensor Characterization

The first set of components to be tested on the air bearing are the attitude determination

sensors. The rate gyroscopes and linear accelerometers within the IMU and the three axis

magnetometer will be tested to determine their noise characteristics as well as any bias

in their respective measurements due to the sensors themselves or external sources. This

information will be used to improve the physical air bearing's attitude estimator and create

an accurate model of the sensor in the air bearing simulation.

5.1.1 IMU Rate Gyroscopes

The three angular rate gyroscopes provide a measurement of the air bearing's angular rate

in degrees per second once per control cycle. The orthogonal sensors provide a rate mea-
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surement about each of the ABBF axes. The Analog Devices ADIS 16365 IMU's rate

gyroscopes do not provide a perfect measurement of the air bearing's angular rates. Error

is introduced to the measurement in several ways. First, random noise in the measurement

causes the measured rate to vary from the true rate by some random value at each mea-

surement. Second, offset bias causes the measured rate to differ from the true rate by some

constant value at each measurement. Though noise cannot be removed, it should be accu-

rately characterized to ensure the attitude estimation algorithm accounts for uncertainty in

the rate gyroscope measurements. The offset bias can be measured and removed as long as

it does not change with time.

In order to determine the noise and offset bias of the IMU, measurements are recorded

from the device at twenty Hertz for a two hour period. During this time, the air bearing

is fixed to the platform forcing it to remain fixed in the inertial reference frame. By fixing

the air bearing, its angular rate is known to be zero in the FIR frame. Therefore, in a true

FIR frame, the rate gyroscope measurements should consist only of noise and offset bias.

However, the air bearing's FIR frame is fixed in the laboratory, which is rotating at the

same rate as Earth's rotation. Even though the rate gyroscopes are fixed with respect to

the FIR frame, their rate measurements should also include Earth's rotation in addition

to noise and offset bias. Table 5.1 gives the average angular rates in degrees per second

for each of the ABBF axes for the two hour test. Table 5.1 also gives the variance of the

noise, which should not be affected by Earth's rotation because Earth's rotation should be

constant in the air bearing's FIR frame.

Table 5.1: Average Rate and Variance of Gyroscope Measurements in Two Hour Fixed Test

Axis Average Rate (deg) Variance (deg2)

zoy 0.0486 0.0556
ybody 0.1246 0.0605
zby 0.1312 0.0835

Earth's rotation rate is 0.00417 deg/sec about its spin axis. Accounting for the labora-

tory's angular orientation with respect to Earth's spin axis, Earth's rotation rate in the air

bearing's FIR frame is given in Equation 5.1.
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0.002083

WEarth = 0.003608 deg (5.1)
sec

0

The magnitude of each of the rate gyroscopes' offset biases (average rates in Table 5.1)

is significantly higher than Earth's rotation rate, which suggests that the offset biases are

not primarily caused by measuring Earth's rotation rate, but are due to inaccuracies in the

gyroscopes themselves. In order to mitigate these biases, they must be subtracted from the

measurements provided by the gyroscopes in order to gain the most accurate rate estimate.

Subtracting the full offset biases ignores the components due to Earth's rotation, but these

components are small relative to the offset biases, and they will have little impact during

a test scenario. The adjusted rate measurements are provided to the attitude estimation

algorithm.

5.1.2 IMU Accelerometers

The three linear accelerometers provide a measurement of the air bearing's linear accelera-

tion in units of Earth's gravity g's which is equal to 9.81 m/s 2 . Just like the rate gyroscopes,

the three linear accelerometers are orthogonally mounted with one accelerometer in each

of the ABBF axes. The accelerometers are also included in the ADIS 16365 IMU. On the

air bearing testbed, the linear accelerometers are used to measure the gravity vector, which

is used by the Extended Kalman Filter to determine an attitude estimate. Measurements

from the linear accelerometers are subject to noise and offset bias similar to other sensors,

but the linear accelerometers' measurements are dominated by discretization rather than

noise or offset. Any noise or offset in the linear accelerometer's measurements is less than

0.01 g's, which is the smallest unit of measurement recorded from the linear accelerome-

ters. This discretization is due to the way the measurement information is stored. Over

the course of the two hour fixed air bearing test, the linear accelerometers measured the

gravity vector in the ABBF z axis to be -0.99 to -1.00 g's, which is either exactly right or

one discretization step off.

Measurement discretization has its own limitations regardless of noise or offset bias.

Because the linear accelerometer measurements are discretized to relatively high step sizes,

the attitude estimate found using the linear accelerometer measurements is limited. For
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instance, the smallest angle that can be measured between the commanded and measured

gravity vector is 0.58 degrees. Equation 5.2 restates Equation 3.80, which is the method used

to find angular orientation error. Equation 5.2 is evaluated using 9cd = [0 0 -1.00]

and gmeas [0 -0.01 -0.99] to represent one linear accelerometer measurement step.

Naccerror _gmeas X [cmd _ _] 0 [] 0.0101 0 0 rad = 0.58 0 0 deg (5.2)
1|gmeas||Igcmd| I 0.99 * 1.00 -

Another limiting factor in using the linear accelerometers to measure the gravity vec-

tor is centripetal acceleration. The linear accelerometers measure all accelerations, which

include gravity and centripetal acceleration due to rotational motion. Centripetal accelera-

tion contributes acceleration components that are not expected by the attitude estimation

algorithm. The magnitude of centripetal acceleration is a function of the sensor's distance

away from the center of rotation and the rate of rotation. Figure 5-1 shows the IMU's

distance away from the center of rotation assuming rotation about the ABBF z axis, which

is the only axis that could sustain high angular rates.

Figure 5-1: IMU Mounting Location
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Equation 5.3 gives the formula for finding centripetal acceleration ac using radial dis-

tance and angular rate [54].

ac = w2r (5.3)

The effects of centripetal acceleration will be minimal if the acceleration is less than what

can be measured by the linear accelerometers, which is known to be 0.01 g's or 0.0981 m/s 2 .

The radial distance in the ABBF x axis is larger than the distance in the ABBF y axis,

which means that the ABBF x axis linear accelerometer will experience greater centripetal

acceleration for a given angular rate. Solving Equation 5.3 for W assuming ac = 0.0981 m/s 2

and r = 169 mm gives an angular rate of 0.762 rad/sec (43.7 deg/sec) in order to produce

0.01 g's of centripetal acceleration or one step in the ABBF x axis linear accelerometer's

measurement. This rate is higher than the maximum rate achievable using the current set of

attitude control actuators. Therefore, centripetal acceleration should not cause significant

error in the the measurements produced by the linear accelerometers.

5.1.3 Magnetometer

The three axis magnetometer provides a measurement of the magnetic field vector in micro-

Tesla pT. The measured magnetic field vector is used by the Extended Kalman Filter to

determine an attitude estimation similar to the way the gravity vector provided by the linear

accelerometers is used by the EKF. Just like other sensors, the magnetometer measurements

are subject to noise and offset bias. In addition to these error factors, the magnetic field

within the laboratory is not uniform as it is for a given location in space. In order to create

a relatively constant magnetic field vector to be measured by the magnetometer, the EMFG

is used to generate a strong magnetic field in the air bearing's FIR y axis as shown below

in Figure 5-2. When in the zero attitude position, the magnetometer is mounted such that

the magnetic field vector created by the EMFG passes directly through the magnetometer.

Rotation about the ABBF z axis will not induce translational motion of the magnetometer,

which means the magnetic field vector at that location should not change. However, rotation

about the ABBF x and y axes will cause translational motion of the magnetometer and will

lead to some change in the magnetic field vector and therefore some attitude estimation

error.
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Figure 5-2: Magnetometer and EMFG Field Vector

In order to characterize noise, measurements from the magnetometer are taken at twenty

Hertz for a two hour period with the EMFG off. During this period, the air bearing is fixed

in the inertial reference frame. Therefore, any change in the magnetic field measurement

is due either to noise or a change in the ambient magnetic field within the lab. Offset bias

cannot be determined during this test because the direction of the total ambient magnetic

field is unknown. Figure 5-3 gives the plot of magnetic field measurements over the two hour

period. As can be seen in the figure, the ambient field does not change, which means that any

high frequency deviations in the measurements are due to sensor noise. Table 5.2 gives the

noise variance for each of the three orthogonal magnetic field sensors on the magnetometer.

The magnitude of the ambient field shown in Figure 5-3 is approximately 85 PT, which is

stronger than Earth's average magnetic field on the surface, which is approximately 50 pT.
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The additional field is likely due to electronic equipment in the laboratory, which distorts

the local magnetic field.

1000 2000 3000 4000
Time (sec)

5000 6000 7000

Figure 5-3: Magnetometer Measurements of Ambient Magnetic Field - EMFG Off

Table 5.2: Variance of Three Axis Magnetometer Measurements in Two Hour Fixed Test

Axis Variance (pT2 )
zbody 0.0096
Ybody 0.0025
Zbody 0.0100

Offset bias must now be characterized in order for the magnetometer to produce a useful

measurement. Offset bias can be caused either by differences in the three sensors on the

magnetometer or external magnetic fields that are created by and fixed to the air bearing.

In order to characterize these biases, the air bearing is commanded to complete ten thirty

second rotations about the ABBF z axis with the EMFG powered on. Measurements from

the magnetometer are recorded during this period and Figure 5-4 gives the results from this

test.
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Figure 5-4: Magnetometer Measurements over Ten ABBF Z Axis Rotations - EMFG On,
No Gains

The ABBE z axis magnetic field measurement has little change, which is expected since

the air bearing is rotating about the ABBE z axis. The ABBE y axis magnetic field mea-

surement is initially much larger than the ambient field ABBE y axis measurement because

the ABBE y axis sensor is measuring the majority of the EMEG's generated magnetic field

vector when the air bearing is in its initial position. The ABBE x axis sensor initially

measures near zero, which is approximately the same as the ambient field ABBE x axis

measurement. Once the air bearing begins its ABBE z axis rotation, the EMEG's field

rotates in the ABBE frame. The ABBE y axis measurement should have the same magni-

tude in the positive and negative direction as it completes a rotation, and the ABBE x axis

measurement should also have the same magnitude as the ABBE y axis measurement with

a period ninety degrees out of phase with the ABBE y axis measurement. The phase shift in

Eigure 5-4 is correct, but the magnitudes of both the ABBE x and y axis measurements are

incorrect. Gains are added to the positive and negative measurements of both the ABBE

x and y axis magnetometers in order to correctly scale the measurements. The positive

ABBE y axis magnetometer measurement is chosen as the baseline and assigned a gain of

one. The four magnetometer gains are listed in Table 5.3.
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Also listed in Table 5.3 is the ABBF z axis magnetometer bias value for the test. As

seen in Figure 5-4, the ABBF z axis has a large magnetic field component that is not

due to the EMFG's generated magnetic field vector. This component cannot be easily

characterized like the ABBF x and y axis components because the air bearing cannot

complete full rotations about the ABBF x or y axes. In order to mitigate error due to the

ABBF z axis component, it is simply removed from the magnetic field measurement using

a bias, which is calculated at the beginning of each test based on the current ABBF z axis

magnetic field measurement value. The resulting magnetic field measurement provided by

the magnetometer represents the sum of the large EMFG generated magnetic field vector

in the FIR y axis and the small ambient field components, which have little effect on the

magnetic field measurement.

Table 5.3: Magnetometer ABBF X, Y Axis Gains and Z Axis Bias

Axis Gains/Bias

Xbody Positive Gain 1.298

Xbody Negative Gain 1.088

Ybody Positive Gain 1.000

Ybody Negative Gain 1.060

Zbody Bias -86.5 pT

The ABBF x and y axis gains and ABBF z axis bias are applied to the magnetometer

measurements, and the ten rotation test is repeated. Figure 5-5 gives the adjusted magne-

tometer measurements resulting from the second test. As seen in this figure, the ABBF z

axis measurement remains near zero with some oscillation due to attitude error. The ABBF

x and y axis measurements oscillate between the same amplitude with the ABBF x axis

measurement ninety degrees out of phase with the ABBF y axis measurement. This is the

expected result of rotating the air bearing perpendicular to the magnetic field vector gen-

erated by the EMFG. The adjusted magnetic field measurements from the magnetometer

are sent to the EKF to help determine an attitude estimate for the air bearing.
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Figure 5-5: Magnetometer Measurements over Ten ABBF Z Axis Rotations - EMFG On,
Gains Applied

5.2 Reaction Wheel Characterization

The air bearing's reaction wheels provide three axis attitude control by accelerating in the

positive or negative directions as commanded. In order to provide accurate attitude control,

the reaction wheels must react to voltage inputs as expected. In Section 3.2.3, a state space

model of the reaction wheels is developed for use in the attitude estimation and control

algorithm. The reaction wheel state space model must predict the physical response of

the reaction wheels accurately enough to develop useful attitude estimation and control

algorithms based on the model.

The first reaction wheel characterization test will be to determine how well the physical

and simulated reaction wheels respond to a step input in the positive direction followed by a

step input in the negative direction. Figure 5-6 shows a commanded reaction wheel angular

velocity of 194 rad/sec (maximum angular velocity) as well as the simulated reaction wheel

response and the actual reaction wheel response for the XRW axis reaction wheel. Though

not exactly alike, the response of each of the four reaction wheels is similar. Therefore, only

response plots for the XRW axis reaction wheel will be shown.
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Figure 5-6: Maximum Step Input and Simulated/Actual Reaction Wheel Response - No
Brake

The 10/90 rise time of the simulated response to the step input shown in Figure 5-6 is

4.61 seconds. The 10/90 rise time of the actual reaction wheel response to the same step

input is 6.48 seconds, which is significantly longer. However, the actual response does not

deviate from the simulated response until the reaction wheel nears its maximum velocity.

The actual wheel appears to have additional damping coefficients that take effect as the

wheel nears saturation. However, maximum step inputs to the actual reaction wheels should

not be used during legitimate ADCS scenario tests. The steady state error of the actual

reaction wheel is 0.52 percent. The most notable deviation of the actual reaction wheel

response seen in Figure 5-6 is the slow return to zero angular velocity after a negative step

input at forty seconds. As discussed in Section 3.2.5, this is due to the Pololu Trex motor

controllers driving voltage across the reaction wheel motors rather than current through the

motors. A braking algorithm is applied which uses reaction wheel rate feedback to determine

when the reaction wheel velocity is five percent higher than its commanded velocity. If so,

the reaction wheel is commanded to brake, which connects the positive and negative motor

leads and quickly decelerates the motor until it is within five percent of its commanded

value. Figure 5-7 shows the same commanded reaction wheel angular velocity shown in

Figure 5-6. However, the reaction wheel responses have the braking algorithm applied.
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Figure 5-7: Maximum Step Input and Simulated/Actual Reaction Wheel Response - Brak-

ing Applied

The actual reaction wheel's response to a negative step input is significantly improved

once the braking algorithm is applied. The 10/90 rise time of the braked reaction wheel

response to the negative step input is 5.27 seconds, which is much less than the approxi-

mately fifty second 10/90 rise time of the unbraked reaction wheel response to the negative

step input.

By differentiating the actual reaction wheel response to a maximum step input shown

in Figure 5-7, the reaction wheel's torque profile can be found. Figure 5-8 shows the

corresponding torque applied by the reaction wheel in response to a maximum step input.

The peak torque is applied just as the reaction wheel receives the maximum step input.

The reaction wheel's peak torque is found to be 0.545 Nm as it accelerates from zero and

0.491 Nm as it accelerates towards zero.
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Figure 5-8: Reaction Wheel Torque

Figure 5-9 shows a commanded reaction wheel angular velocity of forty rad/sec as well

as the simulated and actual reaction wheel responses. The actual response overshoots the

commanded response in this case, but the closed loop braking algorithm helps to maintain

the commanded angular velocity by braking the wheel for short periods to slow it down.

Though the braking algorithm keeps the reaction wheel from exceeding five percent over-

shoot, the algorithm introduces jitter by oscillating the reaction wheel brake command. The

jitter is clearly shown in Figure 5-9. Braking algorithm jitter may have an adverse affect

on ADCS test scenarios. The need for a braking algorithm can be removed if regenerative

motor controllers are used in place of the current Pololu Trex motor controllers. This topic

will be discussed further in Section 6.2.1.
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Figure 5-9: 40 Rad/Sec Step Input and Simulated/Actual Reaction Wheel Response -

Braking Applied

To further compare the simulated reaction wheel model to the actual reaction wheel,

the Bode gain and phase plots of the reaction wheel state space model are given below in

Figure 5-10. Three points on the Bode plots are chosen for comparison with the actual

wheel. The reaction wheel is driven by a sinusoidal input with an amplitude of 4.5 volts,

which corresponds to sixty rad/sec. The three sinusoidal periods chosen for comparison are

fifteen seconds, forty seconds, and 160 seconds. These three points are highlighted on the

Bode plots below.
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Figure 5-10: Reaction Wheel State Space Model Bode Plots

Figures 5-11(a), 5-11(b), and 5-11(c) show the sinusoidal inputs (in rad/sec) as well as

the simulated and actual reaction wheel responses for the fifteen, forty, and 160 second

period cases respectively. Table 5.4 gives the gain and phase of the simulated (from the

Bode plots) and actual responses in all three cases. These values are found during the rate

increase portion of the response when the braking algorithm is not in effect. During this

portion, the gain and phase parameters of the actual response are similar to those from the

Bode plots. However, during the rate decrease portion, the braking algorithm is applied,

and the phase lag of the reaction wheel response is reduced to near zero as seen in the below

figures. Though this effect does not match the Bode phase plot, the braking algorithm is

applied in the simulation as well and drives the phase lag of the simulated response to

near zero. Overall, the braking algorithm causes the reaction wheel to respond differently

depending on whether it is accelerating away from or towards zero. However, the same
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effect is accounted for in the reaction wheel model, which will help the user determine how

the two-phase response of the reaction wheels affects the system.

Time (sec)

(a) RW Response - 15 Second Period

Time (sec)

(b) RW Response - 40 Second Period

(c) RW Response - 160 Second Period

Figure 5-11: Reaction Wheel Response to Sinusoidal Input

Table 5.4: Reaction Wheel Magnitude and Phase Results

Sine Period (sec) Freq (rad/sec) Model Actual Model Actual
Mag (dB) Mag (dB) Phase (deg) Phase (deg)

15 0.4189 20.0 19.76 -42.00 -51.47

40 0.1571 22.1 22.04 -18.50 -22.24

160 0.0393 22.5 22.57 -4.81 -5.87
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5.3 Air Bearing Disturbance Characterization

The air bearing testbed provides a tool to simulate aspects of the space environment to

include reduced friction and zero torque due to gravity. However, the air bearing is located

within a laboratory environment and therefore subject to the disturbances and external

effects caused by such an environment. These disturbances and effects must be clearly

understood and characterized in order to produce useful results from ADCS test scenarios

performed on the air bearing.

5.3.1 Center of Mass Manipulation

In order to reduce torque on the air bearing due to gravity and produce an environment

where the air bearing's attitude control actuators can operate as if in a space environment,

the air bearing's center of mass must be co-aligned with the center of rotation. The air

bearing has several mass manipulation options for coarse and fine CM adjustment. These

options are discussed at length in Section 4.1.1. This section will focus on how to use these

devices to place the CM as close to the center of rotation as possible.

For coarse CM adjustment, the battery packs can be adjusted in the vertical direction,

and trim masses can be added to the air bearing. The battery packs should only be adjusted

to compensate for adding or removing large components on the top of the air bearing. They

are difficult to adjust, their adjustment results in large CM changes, and they only move

the CM in the vertical direction. If smaller components are added to or taken away from

the air bearing, small trim masses can be added for medium CM adjustment.

While adjusting the batteries or adding trim masses, the CM should be placed below

the center of rotation and slowly moved up to co-alignment with the center of rotation. To

ensure the CM is below the center of rotation, the air bearing should be manually rotated

to its maximum pitch angle and released with all air bearing electronics turned off. If the

air bearing oscillates in a pendulum fashion, the CM is below the center of rotation. If the

air bearing remains against the support column regardless of which portion of the safety

ring is in contact with the support column, the CM is above the center of rotation. In this

case, coarse adjustments with the battery packs should be made to lower the CM until it

is just below the center of rotation.
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Once the CM is placed below the center of rotation using the battery packs, and slowly

moved up using trim masses, fine CM adjustment can be made using the linear slide CM

adjusters. As previously discussed in Section 4.1.1, the CM adjusters can only move the

CM 0.189 mm in each axis, so the battery packs and trim masses must be used to place the

CM within 0.189 mm of the center of rotation. The air bearing's estimation and control

algorithm is used to determine how much to move the CM adjusters. The method works

by measuring the torque required by the reaction wheels to hold the air bearing in the zero

attitude orientation and using this information to figure out how gravity is affecting the

system.

Equation 5.4 shows the simplified vector equation of motion that will form the basis of

the fine CM adjustment process. From this equation, it is clear that the reaction wheels

must accelerate (Q) in order to counter the effects of external torque due to gravity (TeXt g).

Textg = DIRWQ (5.4)

Equation 5.5 gives the components that make up torque due to gravity [52]. These

components are the force due to gravity vector itself (mABj) and the position vector from

the center of rotation to the CM (F).

Text g = F X mABg (5.5)

Though it is not possible to determine the complete position vector (f) by knowing the

force due to gravity vector (mAB) and the torque due to gravity (Text g), the projection of

the position vector perpendicular to the force vector (fp) can be found using Equation 5.6.

The division by the force vector magnitude squared is required to correctly convert units of

torque and force to distance.

mAB X Text g
rp = 2  (5.6)|P mABj 1

By substituting Equation 5.4 into Equation 5.6, an equation relating the position vector

(perpendicular to the force due to gravity vector) to the angular acceleration of the reaction

wheels can be found. Equation 5.7 gives this relationship.
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_ mABg x DIRWQ (57)
|mAB

By commanding the air bearing to maintain zero attitude orientation and measuring

the acceleration of the reaction wheels over time, the distance (perpendicular to gravity)

between the center of rotation and the CM can be found using Equation 5.7, and the

CM adjusters can be moved to relocate the CM. The following is an example of the CM

adjustment process. Figure 5-12(a) shows the angular velocity of the reaction wheels over

time required to maintain the air bearing at zero attitude. By applying a linear fit to the

rates and measuring the slope of the linear equation, the constant angular acceleration for

each reaction wheel is found and used to determine the torque due to gravity (Text g), the

magnitude of which is 0.0102 Nm in the first case.
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(a) RW Velocity Before CM Adjustment (b) RW Velocity After CM Adjustment

Figure 5-12: Reaction Wheel Angular Velocity Before and After CM Adjustment

The CM adjustment process may require several iterations because there is some un-

known error in the estimates of the air bearing's mass and the reaction wheels' moments of

inertia. Figure 5-12(b) shows the angular velocity of the reaction wheels over time required

to maintain the air bearing at zero attitude after two iterations of the CM adjustment pro-

cess. The figures have the same scale, which clearly shows that much less control torque

is required by the reaction wheels to maintain the air bearing at zero attitude. The esti-

mated torque due to gravity after two CM adjustment iterations is 6.31e-4 Nm, which is a

reduction of 93.9% of the torque due to gravity before the CM adjustment process.
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5.3.2 Compressed Air Vibration

The air bearing's support mechanism introduces oscillation into the system (See Section 4.5

for more details). If the pounds per square inch (PSI) of the pressurized air is too high

relative to the air bearing's mass, the compressed air causes a high frequency, low amplitude

oscillation in the air bearing's FIR z axis. If the PSI is too low, the air bearing may be

damaged due to contact between the hemisphere and the support bowl. Therefore, the

PSI should be adjusted to reduce the induced oscillation but avoid contact between the

hemisphere and support bowl.

The pressurized air oscillation is characterized during a test of the ExoPlanetSat cubesat

optical system, which is mounted on top of the air bearing and directed towards a simulated

star mounted on the wall of the laboratory. The air bearing is floating with an air pressure

of fifty PSI (normal operating pressure), but the control algorithm is turned off during the

test. The air bearing is held at zero attitude and angular rate by a data cable connecting

an external computer to the ExoPlanetSat optical system mounted on the air bearing [44].

Figure 5-13 shows the results of the ExoPlanetSat optical system test. The optical

system measures attitude error in the plane perpendicular to the position vector from the

optical system to the star. The labeled y axis in Figure 5-13 (green) is equivalent to the

FIR z axis (vertical axis) in the air bearing FIR frame. The high frequency oscillation in

the figure's y axis represents the oscillation due to the compressed air floating mechanism.

Based on ExoPlanetSat's optical system's measurements, the oscillation has an amplitude

of approximately forty arcseconds. The frequency is not known because it is higher than the

data rate of ExoPlanetSat's optical system. The high frequency noise in the figure's x axis

(blue) represents oscillation induced by the compressed air in the air bearing FIR y axis

(horizontal axis). The amplitude of this oscillation is approximately ten arcseconds. The

vertical axis experiences the larger amplitude because it is aligned with the air bearing's

support mechanism. The low frequency (approximately 0.05 Hertz), sixty arcsecond ampli-

tude oscillation in the figure's x axis is due to natural rotation of the air bearing. The data

cable stabilizes the air bearing but is not rigid enough to remove all rotational motion [44].
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Figure 5-13: Air Bearing Oscillation Due to Compressed Air Support Mechanism [44]

5.3.3 Air Bearing Friction

The air bearing is used to simulate the near frictionless environment of space, but the air

bearing is affected by friction due to the laboratory environment. There is some amount

of friction due to the compressed air support mechanism as well as the vehicle's interaction

with Earth's atmosphere at sea level. These two forces act to dampen the air bearing's

angular rate and will eventually return the air bearing to zero angular rate if no control

torques are applied.

To characterize the disturbance torque due to friction on the air bearing, the air bearing

is made pendulum stable and the vertically mounted reaction wheel is used to induce an

angular rate of 16.3 deg/sec about the ABBF z axis. The control law is turned off during

this test so that there are no internal torques acting on the air bearing. Because the air

bearing is pendulum stable, the air bearing's angular rate remains only in the ABBF z axis

and does not precess to another axis. Angular rate measurements are recorded from the

IMU at twenty Hertz throughout the test. Figure 5-14 gives the air bearing's angular rate

profile over a three hour period. The air bearing's angular rate reduces from 16.3 deg/sec to

2.9 deg/sec after three hours. Because there are no control torques applied during this test,

the reduction in angular rate is due to external disturbance torques acting on the system.
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Figure 5-14: Uncontrolled Air Bearing Angular Rate

Torque is found by taking the derivative of the angular rate (angular acceleration) and

multiplying it by the air bearing's moment of inertia about the ABBF z axis (Izz = 2.32

kgm 2 ). Figure 5-15 gives the disturbance torque profile acting on the air bearing during

the three hour period. The disturbance torque appears to be a function of angular rate

since the torque reduces as the angular rate reduces. At the air bearing's maximum angular

rate of 16.3 deg/sec, the magnitude of the disturbance torque is highest at 1.45e-4 Nm.

After three hours, the air bearing's angular rate is 2.9 deg/sec and the magnitude of the

disturbance torque has reduced to 1.60e-5 Nm.

Based on these results, the disturbance torque due to air bearing friction and atmo-

spheric interaction is one to two orders of magnitude below the disturbance torque due to

gravity even with a carefully balanced air bearing. If an ADCS test scenario is required

to have extremely small disturbance torques at the cost of reduced degrees of rotational

freedom, the air bearing can be made pendulum stable which will allow for only one de-

gree of rotational freedom about the ABBF z axis. A disturbance torque profile similar to

Figure 5-15 can be expected in this configuration.
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Figure 5-15: Friction Disturbance Torque acting on Air Bearing

5.4 Integrated Air Bearing and Simulation Characterization

To characterize the behavior of the integrated ADCS testbed, the air bearing and simulation

will be commanded to track an attitude profile (first shown and discussed in Figure 3-

20 of Section 3.2.4) that requires commanded angular rate in all three ABBF axes. In

three separate test cases, the air bearing and simulation will be commanded to track the

same attitude profile with three separate sets of initial conditions. In all three cases, the

estimation and control algorithm included in the provided software will be used and operated

at the default twenty Hertz cycle. In the first test case, the air bearing will begin with zero

stored angular momentum. In the second case, the air bearing will begin the test with a

nonzero angular momentum vector in the FIR x axis. In the third case, the air bearing

will begin the test with the same angular momentum vector as case two; however, the

feedforward portion of the air bearing's control law will be disabled.

5.4.1 Case One - Zero Angular Momentum System

In the first test case, the air bearing will begin with zero stored angular momentum. The

air bearing itself and all reaction wheels are initially at rest with the ABBF frame aligned
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with the FIR frame. Figure 5-16(a) shows the commanded angular orientation profile (black

dotted lines) as well as the air bearing's angular orientation as determined by the EKF. The

commanded orientation requires a ninety degree rotation about the unconstrained ABBF z

axis as well as ten degree rotations about the constrained ABBF x and y axes. Figure 5-16(b)

shows the attitude error in degrees between the commanded and EKF estimated angular

orientations. Maximum error of approximately 1.5 degrees occurs as the air bearing lags

behind and then overshoots the large ABBF z axis commanded rotation.
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(a) Air Bearing Command and Actual Response (b) Actual Angular Orientation Error

Figure 5-16: Actual Angular Orientation and Error - Zero Initial Angular Momentum

In order to verify the results of the MATLAB model, the simulation is given the same

angular orientation command. Figure 5-17(a) shows the simulated air bearing response

to the commanded angular orientation profile, and Figure 5-17(b) shows the simulated

error between the commanded and estimated angular orientation. The simulated angular

error expects ABBF z axis lag of only about one degree rather than the actual 1.5 degrees

shown in Figure 5-16(b). The larger angular error in the actual air bearing is likely due to

reaction wheel dead-band as the wheels start from zero angular velocity. Though motor lag

is simulated in MATLAB, dead-band is not. Also, the initial angular error in the actual

response (Figure 5-16(a)) is due to the air bearing being released in a slightly incorrect

orientation. Otherwise, the actual and simulated error have similar high frequency noise

characteristics and low frequency air bearing motion characteristics.
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Figure 5-17: Simulated Angular Orientation and Error - Zero Initial Angular Momentum

Also important to evaluate are the required reaction wheel angular velocities necessary

to maneuver the air bearing as commanded. Figure 5-18(a) shows the actual reaction wheel

angular velocities as measured by the motor encoders during the maneuver shown in Fig-

ure 5-16(a). Figure 5-18(b) shows the simulated reaction wheel angular velocities necessary

to perform the same maneuver. These plots are dominated by the reaction wheel velocity

changes required to complete the ninety degree ABBF z axis rotation, which requires equal

angular velocity changes in the three orthogonal wheels since they are mounted symmetri-

cally with respect to the ABBF z axis. The actual and simulated angular velocity change

magnitudes are roughly the same with maximums of fifteen rad/sec for each wheel, which

means that the predicted inertial properties of both the air bearing and reaction wheels are

close to the true inertial properties. The most significant difference between the two reac-

tion wheel velocity plots are that there are zero external torques in the simulation, which

leads to the reaction wheels returning to zero angular velocity at the completion of the test.

However, the actual air bearing experiences external torques due to gravity, friction, and

atmospheric damping. This torque builds angular momentum in the system, which must be

stored by the reaction wheels in order to maintain the air bearing at its commanded angular

orientation. Therefore, the reaction wheels do not return to zero, but rather accelerate at

some rate, which is a function of the magnitude and direction of the external torques acting

on the system.
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(a) Actual RW Angular Velocity (b) Simulated RW Angular Velocity

Figure 5-18: Actual and Simulated Reaction Wheel Angular Velocity - Zero Initial Angular
Momentum

5.4.2 Case Two - Non-Zero Angular Momentum System

In the second case, the air bearing will be given the same angular orientation commands

as case one. However, the air bearing will begin the test with initial reaction wheel speeds

given in Equation 5.8. At the beginning of the test, the ABBF frame is aligned with the

FIR frame. Therefore, the initial reaction wheel velocities create an angular momentum

vector of 0.71 Nms in the FIR x axis as shown in Equation 5.9.

40
= 40 rad/sec (5.8)

-80]

0.71

Hre f DIRWQ [ 0 Nms (5.9)

0

Figure 5-19(a) shows the commanded angular orientation profile and the air bearing's

response based on the output of the EKF. Figure 5-19(b) shows the angular error between

the commanded and EKF estimated angular orientations shown in Figure 5-19(a). Though

the air bearing begins the scenario with a large angular momentum vector in the FIR x axis,

the air bearing's estimation and control algorithm is capable of estimating the gyroscopic

torques caused by the angular momentum vector, and maintaining the air bearing's attitude
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to within limits similar to those of the zero angular momentum case. Maximum error of

approximately 1.3 degrees occurs as the air bearing begins and completes the ABBF z axis

rotation.
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Figure 5-19: Actual Angular Orientation and Error - Nonzero Initial Angular Momentum

The same initial reaction wheel angular rates are applied to the Simulink model, and

Figure 5-20(a) shows the simulated air bearing response to the same commanded angular

orientation profile. Figure 5-20(b) shows the angular error between the commanded and

simulated air bearing orientations. The model predicts maximum angular error of approx-

imately 1.3 degrees in the ABBF z axis as the air bearing lags behind and overshoots the

commanded ABBF z axis rotation, which is similar to the actual error given in Figure 5-

19(b). Error in the ABBF x and y axes is predicted to have maximums of approximately 0.7

degrees, whereas the actual angular error in the ABBF x axis is approximately 1.3 degrees.

The larger ABBF x axis error is likely due to unmodeled external torques.

The most obvious difference between the first and second test cases are the reaction wheel

angular velocity plots. Figure 5-21(a) shows the actual angular velocities of the reaction

wheels and Figure 5-21(b) shows the simulated angular velocities of the reaction wheels.

In both plots, the reaction wheels begin the test at 40, 40, and -80 rad/sec respectively,

which creates the large angular momentum vector described above. The effects of gyroscopic

torques are clear in the reaction wheel velocity plots because if the torques were not present,

the reaction wheels would follow an angular velocity profile similar to those shown in the

first case above (Figures 5-18(a) and 5-18(b)) but offset by their initial velocity values.
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Figure 5-20: Simulated Angular Orientation and Error - Nonzero Initial Angular Momentum

However, to maintain air bearing attitude control in the presence of gyroscopic torques, the

reaction wheels are required to perform a much different angular velocity profile shown in

the below figures. The largest difference between the actual and simulated reaction wheel

velocity plots are the presence of external torques on the actual air bearing, which drive

the actual reaction wheels to have some unmodeled acceleration seen in Figure 5-21 (a) as

some slight positive or negative slope to the reaction wheel velocity profile when compared

with the simulated profile in Figure 5-21(b).

Time (sec)

(a) Actual RW Angular Velocity (b) Simulated RW Angular Velocity

Figure 5-21: Actual and Simulated Reaction Wheel Angular Velocity - Nonzero Initial
Angular Momentum
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5.4.3 Case Three - Nonzero Angular Momentum System - No Feedfor-

ward

In the third test case, the reaction wheels are given the same initial angular velocities as case

two; 40, 40, and -80 rad/sec respectively, and the air bearing is given the same commanded

angular orientation profile. However, in this case, the feedforward term of the control

algorithm is disabled. Therefore, rather than predicting the gyroscopic torques caused by

the interaction between the air bearing's angular velocity and the angular momentum vector,

the LQR controller will have to interpret angular error based on EKF state estimates, and

compensate for the error by updating reaction wheel commands. Figure 5-22(a) gives the

commanded angular orientation profile and the air bearing's response, and Figure 5-22(b)

gives the angular error between the commanded and EKF estimated angular orientations.

The additional angular error in all three axes can be seen in both figures. The ABBF z axis

lag and overshoot increases from a maximum of approximately 1.3 degrees to 2.5 degrees.

The ABBF x and y axis errors increase from a maximum of 1.3 degrees to nearly four

degrees.
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Figure 5-22: Actual Angular Orientation and Error - Nonzero Initial Angular Momentum,
No Feedforward
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The same initial conditions and controller changes are applied to the simulation, and

Figures 5-23(a) and 5-23(b) give the simulated air bearing response and angular error re-

spectively. Though the simulation predicts that the air bearing's angular error will increase

with the disabled feedforward controller, the magnitude of the predicted angular error is

less with a maximum of approximately 2.5 degrees. The larger actual angular error is most

likely due to unmodeled external torques.

Time (sec) Time (sec)

(a) Simulated Air Bearing Command and Simu-
lated Response

Figure 5-23: Simulated Angular Orientation and
tum, No Feedforward

(b) Simulated Angular Orientation Error

Error - Nonzero Initial Angular Momen-

5.5 MicroMAS ADCS Scenario

The purpose of the ADCS testbed is to verify and validate ADCS hardware and software

algorithms for use on small satellites being developed within the SSL. Now that the air

bearing's hardware components have been individually characterized, and the integrated

system has been tested, the final step in validating the ADCS testbed is to perform an

ADCS scenario test for one of the SSL's satellites.

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a three unit cubesat

being developed in cooperation between the SSL and Lincoln Laboratory [36]. MicroMAS'

mission is to make observations of hurricane dynamics using a microwave spectrometer [36].

In order to complete its mission, MicroMAS will maintain alignment with the Local Vertical,

Local Horizontal (LVLH) orbital frame. MicroMAS will have its x axis (long axis) aligned
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with the velocity vector and its z axis aligned with the negative nadir vector. The y axis

is in the plane tangent to Earth's surface. In order to maintain alignment with this frame,

MicroMAS will complete one revolution about its y axis per orbit. Based on MicroMAS'

mission requirements, its payload (which consists of one of the three cubesat sections) will

spin at one Hertz about the satellite's x axis [36]. Reference Figure 5-24 for clarity on

MicroMAS' coordinate system and payload orientation.

Precession
Axis

Payload
Rotation

Plane

nadir -
X

Figure 5-24: MicroMAS with Coordinate System [36]

In order to reduce the effects of gyroscopic torque on the satellite, MicroMAS' x axis

reaction wheel will be used to store the momentum induced by spinning the payload at one

Hertz. Therefore, the satellite will have zero net angular momentum and should react to

control torques just like a satellite with zero angular momentum in all components. The

following test will compare the response of three unique systems to the same commanded

angular orientation profile. The first system will have zero angular momentum in every

component, the second system will have zero net angular momentum with nonzero angular

momentum in individual components, and the third system will have a nonzero angular

momentum vector. The purpose of the test is to show that a system with net zero angular

momentum reacts like a system with zero angular momentum in all components and not

like a system with nonzero angular momentum.



To simulate MicroMAS' CONOPs, the air bearing's fourth reaction wheel will be used

to mimic MicroMAS' spinning payload. The air bearing's three orthogonal wheels will be

used to store the angular momentum of the fourth reaction wheel and create a zero net

angular momentum system. Figure 5-25 shows the spin direction of the reaction wheels.

MicroMAS will require constant rotation about its y axis (which is perpendicular to the

payload spin axis) in order to maintain alignment with the LVLH frame. However, the

air bearing is not capable of constant rotation about an axis perpendicular to the fourth

reaction wheel's spin axis due to air bearing constraints. Therefore, the air bearing will

be commanded to oscillate about the ABBF x axis to stay within its constraints while still

rotating the fourth reaction wheel about an axis perpendicular to its spin axis. Figure 5-26

shows the commanded angular orientation profile throughout the test. The ABBF y and z

axes will stay at zero attitude while the ABBF x axis oscillates from -15 to +15 degrees.

Figure 5-25: MicroMAS CONOPs Test on Air Bearing
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Figure 5-26: Commanded Angular Orientation for MicroMAS Scenario

The first system will follow the same commanded angular orientation shown in Figure 5-

26 but will begin with zero angular momentum in all components. The results of this test

will be used as a baseline for comparison with the net zero angular momentum system.

Figure 5-27(a) shows the commanded and actual angular orientation as estimated by the

EKF. The air bearing is able to maintain the commanded angular orientation with maximum

error of approximately one degree as it overshoots the first fifteen degree peak. Figure 5-

27(b) shows the reaction wheel velocities necessary to maintain the commanded angular

orientation. The reaction wheels do not return to zero velocity at the completion of the

test due to external torques acting on the system. Though these unknown torques make

the overall results difficult to interpret, the same torques should act on the following two

scenarios. Therefore, the reaction wheel velocity results for the net zero angular momentum

system and the nonzero angular momentum system should still be comparable to the zero

angular momentum system.
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Figure 5-27: Air Bearing Angular Orientation and Reaction Wheel Angular Velocity - Zero
Angular Momentum System

The second system, which simulates MicroMAS' CONOPs begins the test with zero an-

gular momentum in all components. At ten seconds, the fourth reaction wheel is accelerated

to 170 rad/sec, which creates an angular momentum vector with a magnitude of 1.23 Nms

in the positive FIR z axis. In order to maintain the commanded angular orientation, the

three orthogonal reaction wheels accelerate to -98 rad/sec each, which creates an angular

momentum vector of equal magnitude in the negative FIR z axis and a net zero angular

momentum system. Figure 5-28(a) shows the commanded and actual orientation of the

net zero angular momentum system. The angular error at ten seconds is due to the fourth

reaction wheel spin up, and the angular error at 420 seconds is due to the fourth reaction

wheel returning to zero angular velocity. Figure 5-28(b) shows the reaction wheel velocities

throughout the net zero angular momentum test. At ten seconds, the fourth reaction wheel

accelerates to 170 rad/sec and the three orthogonal wheels accelerate to -98 rad/sec each.

Besides the offset of -98 rad/sec, the three orthogonal reaction wheels respond very similarly

to the three reaction wheels in the zero angular momentum test. External torques still act

on the system, but the torques are similar and drive the reaction wheels to similar final

velocities. At 420 seconds, the fourth reaction wheel returns to zero, and the three orthog-

onal reaction wheels remove their -98 rad/sec offsets. Once the fourth wheel is stopped, the

three orthogonal reaction wheels have velocities almost equal to those of the first test as

shown in Figure 5-29, which plots the wheel velocities of both scenario one and two.
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Figure 5-29: Reaction Wheel Angular Velocity - Zero and Net Zero Angular Momentum

The third system will follow the same commanded angular orientation profile given in

Figure 5-26, but will begin with an angular momentum vector of 1.23 Nms in the minus

FIR z axis. This vector will be created by spinning the three orthogonal reaction wheels to

-98 rad/sec each while leaving the fourth reaction wheel at zero velocity. The air bearing

is still able to closely track the commanded angular orientation as shown in Figure 5-30(a),

but the reaction wheel velocities required to maintain the commanded angular orientation

(given in Figure 5-30(b)) are much difference than those in the first two tests. Due to

the angular momentum vector, gyroscopic torques have an effect on the system, and the

reaction wheels must compensate in order to maintain the air bearing's angular orientation.
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Figure 5-30: Air Bearing Angular Orientation and Reaction Wheel Angular Velocity -

Nonzero Angular Momentum System

Overall, the second system simulating MicroMAS' CONOPs performs much like the

first system with zero angular momentum. The primary difference is the constant offset

of -98 rad/sec per reaction wheel, which is required to store the fourth reaction wheel's

angular momentum vector. The gyroscopic torques due to the fourth reaction are canceled

by those caused by the equal but opposite angular momentum vector created by the three

orthogonal reaction wheels, and the additional control torques necessary to track the air

bearing's commanded angular orientation profile are therefore the same as those required

by the zero angular momentum system. The third system has a large angular momentum

vector, which creates gyroscopic torques that must be compensated for by the reaction

wheels. This leads to a much different reaction wheel angular velocity profile than those of

the zero and net zero angular momentum systems.
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5.6 Testing Summary

To produce useful results for control theory students and satellite development engineers, the

ADCS testbed must be tested to characterize and account for the limitations of the system.

First, the air bearing's attitude sensors are tested to determine their noise characteristics and

observability limitations. Next, the attitude control reaction wheels are tested to measure

their response characteristics and torque capabilities. The air bearing is then tested to

measure the disturbance torques acting on the system, which are unique to an ADCS

simulator operating within a laboratory environment. The primary disturbance torque

caused by gravity acting on the air bearing's center of mass can be reduced by carefully

aligning the center of mass with the center of rotation. The process for adjusting the center

of mass to reduce torque due to gravity is discussed. The integrated ADCS system is then

tested in several configurations to create a baseline for expected results in the presence of

disturbance torques like gravity, atmospheric drag, and friction. Finally, the air bearing is

used to perform a CONOPs test for the SSL's three unit cubesat, MicroMAS in order to

prove the functionality of the ADCS testbed as well as provide useful information for the

MicroMAS satellite development team.
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Chapter 6

Conclusion

The objective of this thesis is to design, develop, and validate an ADCS testbed capable of

simulating key characteristics of the space environment in a university laboratory. ADCS

systems often require the micro-gravity, reduced friction environment of space to function

as designed, and these characteristics are difficult to reproduce in a laboratory. The ADCS

testbed designed and built in conjunction with this thesis is capable of simulating micro-

gravity and reduced friction using a three degree of freedom rotational air bearing. The

ADCS testbed and supporting MATLAB simulation provide university satellite developers

with the means to test hardware in the loop ADCS systems just as they will be required

to operate on orbit. "Test as you fly" scenarios will help ADCS engineers gain confidence

in their designs and provide an increased level of mission assurance for the overall satellite

program.

6.1 Thesis Summary

The thesis begins by discussing the basic principles of an attitude determination and con-

trol system, which include the subsystem's purpose on a satellite and its importance to a

satellite's mission. The current state of the art for satellite ADCS systems is discussed and

examples of actual satellites and their corresponding ADCS systems are given. To validate

the need for the development of an ADCS testbed, several examples of on-orbit satellite

ADCS failures are given. Some failures can be mitigated via software or CONOPs changes

while others lead to mission failure. Background research concludes with a discussion of
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the current state of ADCS testbed technology and the design requirements for an ADCS

testbed within the Space Systems Laboratory.

The thesis then covers the development of a model to simulate the dynamics of the air

bearing testbed. The various coordinate systems used by the air bearing are defined, and the

air bearing's equations of motion are derived. Development of a MATLAB based simulation

of the air bearing is then discussed. The simulation models each major component of the air

bearing testbed, which include reaction wheel and air bearing dynamics, attitude estimation

using the air bearing's sensors and linearized dynamics equations, and attitude control using

feedback and feedforward methods.

Following the simulation development discussion, the thesis covers development of the

physical air bearing testbed. The testbed requires all the major subsystems of a generic

satellite in order to function independently, and the design and development of each of the

subsystems is described. The subsystems include the air bearing's structure, the power

system, avionics and communication, attitude determination, attitude control, and ground

station operation. Development of the default set of ADCS testbed software is then dis-

cussed. The software is designed so that it can be easily modified to meet the requirements

of a wide range of ADCS test scenarios. Development of the testbed's external magnetic field

generator is discussed along with the generator's operational requirements and capabilities.

Once ADCS testbed development is complete, each component of the air bearing is char-

acterized to ensure the testbed operates as expected. Noise characteristics of the attitude

sensors and response characteristics of the attitude control reaction wheels are determined,

and the simulation is adjusted to match the physical system. Disturbances acting on the air

bearing like torque due to gravity and friction are measured to reduce the error induced by

simulating the inertial properties of the space environment in a laboratory. The integrated

air bearing is tested to validate its performance throughout several generic ADCS scenar-

ios. Finally, the air bearing is used to perform an ADCS CONOPs scenario for MicroMAS,

which is a cubesat being developed within the SSL. The MicroMAS test scenario is used

to validate the ADCS testbed's functionality as a useful tool for satellite ADCS system

development.
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6.2 Future Work

Though the testbed is already an asset to ADCS engineers, the air bearing can be improved

to provide expanded functionality for future satellite ADCS developers. The following are

just a few examples of testbed updates that would allow for increased testbed capability.

6.2.1 Reaction Wheel Regenerative Motor Controllers

One of the most limiting disturbances associated with the air bearing is the nonlinear

braking algorithm required to reduce the angular velocity of the reaction wheels. This is due

to the Pololu Trex motor controllers driving voltage across the reaction wheel motor leads

rather than current. To mitigate this problem, the SSL recently acquired three Sabertooth

dual twelve Amp regenerative motor controllers capable of driving current through the

reaction wheel motors to reduce angular velocity when commanded. The Sabertooth motor

controllers reverse lead polarity and recharge the batteries to actively reduce reaction wheel

angular velocity when commanded. The result is a negative reaction wheel step response

which has similar characteristics to the positive step response without the need to apply a

nonlinear braking algorithm.

Two Sabertooth dual motor controllers can replace the two Pololu Trex motor con-

trollers relatively easily. The motor controllers have similar physical characteristics, and

avionics code updates should be relatively simple. Overall, replacing the Pololu Trex motor

controllers with the Sabertooth motor controllers will improve air bearing performance and

reduce attitude error due to reaction wheel jitter.

6.2.2 Reaction Wheel Vibration Characterization and Rejection

The air bearing structure is subject to vibration induced by the reaction wheels as they

pass through angular velocities that excite fundamental frequencies in the structure. These

vibrations cause attitude error that may adversely affect an ADCS test scenario depending

on the required attitude control for the given scenario. To avoid this problem, the redundant

set of reaction wheels can be used to transfer angular momentum and avoid angular velocities

that excite structural fundamental frequencies.

First, the fundamental frequencies must be identified by cycling the reaction wheels

from negative angular velocity maximums to positive maximums and carefully measuring
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the air bearing's vibration response using sensitive, high frequency accelerometers. After

the frequencies are identified, angular momentum transfer algorithms can be written to

transfer angular momentum from one of the four reaction wheels to another in order to

avoid the reaction wheel angular velocities that cause air bearing vibration. If a wheel must

pass through one of the fundamental frequency exciting velocities, the angular momentum

transfer algorithm can be used to have the wheel pass through quickly in order to minimize

vibration.

6.2.3 Variable EMFG

The current EMFG creates a magnetic field in the air bearing's FIR y axis. The strength

of the magnetic field can be manually adjusted from its maximum value in the negative

direction to the maximum value in the positive direction. In order to better simulate

Earth's magnetic field over the course of an orbit, four additional coils should be aligned

with the air bearing's FIR x and z axes. The six total coils could be used to create a

magnetic field in any direction with respect to the air bearing. Furthermore, the coils could

be controlled via a microprocessor and high power H bridge circuits so that the magnetic

field vector could be automatically slewed throughout the ADCS test. The automatic slew

could be designed to mimic the motion of the Earth's magnetic field over the course of a

satellite's orbit.

6.2.4 Estimation and Control with Integrated SPHERES

The air bearing is designed to physically integrate with a SPHERES satellite, and the

ground station is capable of independently communicating with the SPHERES satellite.

However, the SPHERES satellite could provide further functionality if it were able to di-

rectly communicate with the air bearing's avionics system, which is driven by dual Arduino

Megas. The SPHERES satellite has a UART TTL port integrated into its expansion port

and the main Arduino has an available UART TTL port. With some software additions,

the SPHERES satellite could be used to provide additional attitude sensing directly to the

estimation and control algorithm using its global metrology system, and it could provide

control torque using its cold gas thrusters.
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6.2.5 Automated Center of Mass Adjusters

The air bearing currently uses CM adjusters that require manual operation to change the

CM and reduce torque due to gravity. The manual CM adjusters could be replaced by

motorized linear slides that could adjust the CM in real time during a test to more precisely

align the CM with the center of rotation and significantly reduce the disturbance torque due

to gravity. Real time CM adjustment would be most useful in cases where the SPHERES

thrusters are used for attitude control. Because the thrusters use an expendable fuel source,

the CM of the system will change as the fuel is depleted. Real time automated CM adjusters

would be able to estimate the change in the CM due to fuel usage and adjust the CM

accordingly throughout the test.

An additional application for automated CM adjusters would be to use them as a type of

attitude control device. The CM adjusters could manipulate the CM such that the resulting

torque due to gravity would cause controlled maneuvers about rotational axes in the plane

perpendicular to the gravity vector.
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Appendix A

ADCS Testbed Users Manual

A.1 MATLAB Simulation

The ADCS testbed MATLAB model is named:

air-bearing-sim.mdl

The file should be saved at the following location on the ground station computer:

C:\Users\SSL User\Desktop\Air Bearing Simulation and Init File

If the simulation file is not in the above location, or the file has been modified unex-

pectedly, a backup of the simulation file is located on the SSL's server at:

\\spacelab\Projects\Air Bearing Testbed\Air Bearing Simulation and

Init File

The Simulink simulation was created using MATLAB version R2010b. This version or

a more recent one should be used to open and run the simulation.

The MATLAB script files called by the simulation are stored in the same location as

the simulation file. The required MATLAB script files are listed below. If any of these files

are missing or modified from the ground station computer, they can be retrieved from the

SSL server at the same location listed above.

" test.init.m

" linear-eq.m

" skew.m

" mag.m
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0 sim-plot.m

The simulation can be run by simply opening the Simulink model using MATLAB

and clicking the "Start Simulation" block (play button) on the toolbar at the top of the

file. The Simulink model calls the testinit.m file before beginning in order to define the

required initial conditions. In order to change the simulation's initial conditions, open

the testinit.m file and make the desired changes. Initial condition changes include the

simulation timestep, reaction wheel initial velocities, air bearing initial angular position,

air bearing inertia properties, EKF weighting matrices, and LQR weighting matrices. The

desired simulation plots to be displayed once the simulation has completed can also be

selected in the test init.m file.

The Simulation automatically runs the testinit.m and sim.plot.m files. To change the

automatically run script files, use the following process.

1. Right click on the "Clock" block in the simulation

2. Select "Block Properties..."

3. Select the "Callbacks" tab

4. To add/remove/change script files that run before the propagation loop begins, select

"InitFcn" in the "Callback functions list:" and type the name of the script files

(excluding ".m")

5. To add/remove/change script files that run after the propagation loop ends, select

"StopFcn" in the "Callback functions list:" and type the name of the script files

(excluding ".m")

6. Select "Ok"

7. Ensure that the callback script files are saved in the same location as the simulation

file

To change the commanded air bearing angular orientation and rate, double click on the

"commanded position and rate" block and change the x, y, and z inputs as desired. The

user can change other portions of the simulation as well, though the simulation should be

saved under a new file name in order to maintain the original copy.
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A.2 Air Bearing Software

A.2.1 Required Arduino IDE Software

The air bearing uses two Arduino Megas as its avionics computer. The Arduinos require an

IDE in order to upload software and download data. The Arduino IDE software is installed

on the ground station computer and a shortcut to the program is located on the computer's

desktop under the name "Arduino IDE". If the program is missing, it can be downloaded

from Arduino's website at:

http://www.arduino.cc/en/Main/Software

A.2.2 Opening and Updating Arduino Code for the Air Bearing

The Main and Auxiliary Arduinos each have default software provided as part of this thesis.

This software can be updated to meet the needs of an ADCS test scenario, but changes

should be saved under a new file name. The original software should not be modified. The

Main Arduino's software is named:

mega-main.pde

The Main Arduino's software is located on the ground station computer at the following

location:

C:\Users\SSL User\Desktop\Arduino Avionics Software\megarmain

If the mega.main.pde file is not in the above location, or the file has been modified

unexpectedly, a backup of the file is located on the SSL's server at:

\\spacelab\Projects\Air Bearing Testbed\Arduino Avionics Software

\megarmain

The Main Arduino software files can also be found in Appendix C of this thesis. The

mega.main.pde file must be opened with the Arduino IDE software. The default software

is a compilation of four code files. The primary file is the mega..main.pde file. The other

three supporting files are listed below.

" functions.h

" matrix.h

" init.h
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The function.h and matrix.h file should not require regular updating. The init.h file

however contains the test scenario initial conditions. The test-init.m file used to define the

initial conditions for the Simulink simulation also creates an init.h file containing the same

initial conditions. The following process should be used to update the init.h file for a given

set of initial conditions in the Arduino software.

1. Open test.init.m from C:\Users\SSL User\Desktop\Air Bearing Simulation and Init

File

2. Update test.init.m to reflect the desired initial conditions

3. Run test-init.m, which creates an init.h file and stores the file in the same location as

testinit.m

4. Open mega.main.pde from C:\Users\SSL User\Desktop\Arduino Avionics Software

\mega-main using the Arduino IDE software

5. If a previous init.h file is already in the software (there should always be an init.h file

in place), Select the "init.h" tab at the top of the Arduino IDE. If no init.h file is in

place, go to step 8

6. With the "init.h" tab highlighted, click the right arrow block in the top right corner

of the Arduino IDE

7. Select "Delete"

8. Select "Sketch" from the menu at the top of the Arduino IDE

9. Select "Add File..." from the drop-down menu

10. Navigate to the location of the updated init.h file, which should be at C:\Users\SSL

User\Desktop\Air Bearing Simulation and Init File

11. Select the init.h file and click "Open"

12. The updated init.h file should now be in place. Click the play button in the top left

corner of the Arduino IDE to ensure the software compiles correctly.
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The commanded air bearing angular orientation and rate must also be updated in the

mega-main.pde software to match the commands given in the simulation. To update com-

manded angular orientation and rate, go to the "Commanded Angular Orientation and

Commanded Angular Rate" section of the mega.main.pde software. Angular rate and ori-

entation can be assigned for each axis in this section.

The Auxiliary Arduino's software is named:

mega-aux.pde

The Auxiliary Arduino's software is located on the ground station computer at the

following location:

C:\Users\SSL User\Desktop\Arduino Avionics Software\megaaux

If the mega.aux.pde file is not in the above location, or the file has been modified

unexpectedly, a backup of the file is located on the SSL's server at:

\\spacelab\Projects\Air Bearing Testbed\Arduino Avionics Software

\mega-aux

The Auxiliary Arduino software file can also be found in Appendix C of this the-

sis. The mega...aux.pde file must be opened with the Arduino IDE software. Unlike the

mega-main.pde software, the mega.aux.pde software does not require regular updating.

A.2.3 Uploading Arduino Code to the Air Bearing

The software for the Main and Auxiliary Arduinos must be uploaded to each Arduino

separately. The following list describes the process necessary to upload software from the

ground station to the air bearing Arduinos.

1. Open the mega-main.pde or mega-aux.pde using the Arduino IDE software

2. Ensure the TruLink wireless USB receiver is connected to the ground station computer

and the green light on the receiver is on

3. On the air bearing, flip the black switch located next to the air bearing's USB receiver

to the on position. Do not turn on the black switches located next to the reaction

wheel motor controllers

4. The ground station's wireless USB receiver should recognize the air bearing's USB

receiver, and a blue indicator light should illuminate on the ground station's receiver.
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If this light does not illuminate (occurs once every 8-10 uses), physically remove the

ground station USB receiver from its base and replace it. Resetting the receiver

should allow the two USB receivers to recognize each other, and the blue indicator

light should illuminate.

5. Return to the Arduino IDE and select "Tools" from the menu at the top of the IDE

6. Select "Serial Port" from the drop-down menu

7. The Main Arduinos will be represented by open COM ports. Usually, the Main Ar-

duino is assigned "COM3" on the ground station computer and the Auxiliary Arduino

is assigned "COM4". However, the user should check to ensure which Arduino is as-

signed to which port. Select the desired COM port.

8. Select the "Upload" button at the top of the Arduino IDE. This will begin the upload

process as indicated at the bottom of the Arduino IDE

9. Wait until the Arduino IDE indicates that the upload has completed at the bottom

of the IDE

In general, software changes must be uploaded to the Main Arduino regularly to reflect

initial condition changes, output changes, and commanded angular orientation and rate

changes. However, the Auxiliary Arduino software does not require regular updating, and if

no changes have been made, the Auxiliary Arduino's software does not need to be uploaded.

A.2.4 Downloading and Processing Air Bearing Data

The first step in downloading data from the air bearing during testing is indicating which

data should be downloaded. At the top of the mega-rnain.pde software is the section labeled

"Set Desired Outputs". Variables defining the air bearing's state are available for output at

each time step during the test scenario. In this section, the desired outputs can be selected,

and the software can be uploaded to the Main Arduino. The following list gives a brief

description of each available output variable.

* timekeep - Current test scenario time in seconds

e RealDeltaT - Time step in milliseconds
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e deltaT - Time step in number of 4kHz cycles from RTC module

e RW1.ComSpeed - Commanded RWCS x axis reaction wheel speed in rad/sec

a RPS1 - Magnitude of measured RWCS x axis reaction wheel speed in rad/sec

e RW1_Volt - Commanded RWCS x axis reaction wheel voltage from motor controller

9 RW2_ComSpeed - Commanded RWCS y axis reaction wheel speed in rad/sec

9 RPS2 - Magnitude of measured RWCS

e RW2_Volt - Commanded RWCS y axis

9 RW3_ComSpeed - Commanded RWCS

o RPS3 - Magnitude of measured RWCS

a RW3-Volt - Commanded RWCS z axis

0 xComPos - Commanded ABBF x axis

e yComPos - Commanded ABBF y axis

0 zComPos - Commanded ABBF z axis

y axis reaction wheel speed in rad/sec

reaction wheel voltage from motor controller

z axis reaction wheel speed in rad/sec

z axis reaction wheel speed in rad/sec

reaction wheel voltage from motor controller

angular orientation in deg

angular orientation in deg

angular orientation in deg

0 x-ComRate - Commanded ABBF x axis angular rate in deg/sec

e yComRate - Commanded ABBF y axis angular rate in deg/sec

0 zComRate - Commanded ABBF z axis angular rate in deg/sec

e tx.p - Estimated ABBF x axis angular orientation in deg

e ty-p - Estimated ABBF y axis angular orientation in deg

e tzp - Estimated ABBF z axis angular orientation in deg

e wx.p - Estimated ABBF x axis angular rate in deg/sec

e wy-p - Estimated ABBF y axis angular rate in deg/sec

e wz-p - Estimated ABBF z axis angular rate in deg/sec

* wx-dot-p - Estimated ABBF x axis angular acceleration in deg/sec2
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" wydot-p - Estimated ABBF y axis angular acceleration in deg/sec2

" wz-dot-p - Estimated ABBF z axis angular acceleration in deg/sec 2

" RPS4 - Magnitude of measured 4th reaction wheel speed in rad/sec

" x-gyro - Raw measurement of IMU's x axis rate gyroscope in deg/sec

" y-gyro - Raw measurement of IMU's y axis rate gyroscope in deg/sec

" z-gyro - Raw measurement of IMU's z axis rate gyroscope in deg/sec

" xMeasRate - IMU rate gyro measurement in ABBF x axis in deg/sec

" yMeasRate - IMU rate gyro measurement in ABBF y axis in deg/sec

" z..MeasRate - IMU rate gyro measurement in ABBF z axis in deg/sec

" x-acc - Raw measurement of IMU's x axis linear accelerometer in g's

" y.acc - Raw measurement of IMU's y axis linear accelerometer in g's

* z-acc - Raw measurement of IMU's z axis linear accelerometer in g's

" x..mag - Raw measurement of Magnetometer's x axis magnetic field sensor

* y..mag - Raw measurement of Magnetometer's y axis magnetic field sensor

" z-mag - Raw measurement of Magnetometer's z axis magnetic field sensor

" xMag - Magnetometer measurement in ABBF x axis

* yMag - Magnetometer measurement in ABBF y axis

" zMag - Magnetometer measurement in ABBF z axis

" Wx..est - Estimated angular velocity of RWCS x axis reaction wheel from s

model

" Wy-est - Estimated angular velocity of RWCS y axis reaction wheel from s

model

" Wz-est - Estimated angular velocity of RWCS z axis reaction wheel from s

model
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e x.grav - Commanded ABBF x axis gravity vector component

e y-grav - Commanded ABBF y axis gravity vector component

0 z-grav - Commanded ABBF z axis gravity vector component

* x-grav-pos - Estimated ABBF x axis angular orientation

ment

e y-grav-pos

ment

a z-grav.pos

ment

from gravity vector measure-

- Estimated ABBF y axis angular orientation from gravity vector measure-

- Estimated ABBF z axis angular orientation from gravity vector measure-

e x-mag.cmd - Commanded ABBF x axis mag field vector component

a y.magcmd - Commanded ABBF y axis mag field vector component

" z-magcmd - Commanded ABBF z axis mag field vector component

" x.mag-pos - Estimated ABBF x axis angular orientation from magnetic

measurement

" y-mag-pos - Estimated ABBF y axis angular orientation from magnetic

measurement

" z-mag-pos - Estimated ABBF z axis angular orientation from magnetic

measurement

field vector

field vector

field vector

Once the software with the desired outputs is uploaded and the test is ready to begin,

select the "Serial Monitor" at the top of the Arduino IDE. The serial monitor displays

the data received over the selected COM port. The data will stream to the serial monitor

throughout the test. Once the test is complete, the data from the serial monitor can be

selected and copied into a text file or Excel file for evaluation using Excel or MATLAB.
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A.3 Air Bearing Hardware

A.3.1 Air Bearing SolidWorks Model

The air bearing's SolidWorks files are located on the ground station computer at the fol-

lowing location:

C:\Users\SSL User\Desktop\Air Bearing SolidWorks Files

The SolidWorks assembly file which reflects the air bearing's current configuration is

stored in the above location and named:

Air Bearing Assembly with SPHERE

If the SolidWorks files are missing or modified, a backup of the files are located on the

SSL's server at:

\\spacelab\Projects\Air Bearing Testbed\Air Bearing SolidWorks Files

The SolidWorks model of the air bearing is used to determine the inertial properties of

the air bearing for the simulation as well as the estimation and control algorithm. Changes

can be made to the SolidWorks model and the updated inertial properties can be found by

clicking on the "Mass Properties" button in the SolidWorks "Evaluate" menu.

A.3.2 Air Bearing Maintenance

Maintaining the air bearing is relatively simple and consists of cleaning the air filters and

removing excess water from the air dryer after 8 - 10 hours of air bearing use. To clear

the four black air filters; with air pressure applied, slowly twist the knob at the bottom

of each filter one at a time to allow some air flow through the filter. Allow air to flow for

approximately ten seconds and repeat for each filter.

To remove excess water from the white compressed air dryer, turn off compressed air

flow at the SSL laboratory wall source. With the air flow off, twist the knob at the bottom

of the first black air filter until all compressed air between the wall source and the filter has

been removed. This may take a minute or two. Place a disposable cup below the output of

the compressed air dryer and slowly open the value. Some compressed air may still be in

the system, and opening the value quickly may eject dirty water around the lab. Once the

value is opened and any water is drained, close the value and the air filter's knob, and turn

on the compressed air source at the wall.
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A.3.3 Charging Air Bearing Batteries

The following process explains how to properly charge the air bearing's three batteries. In

general, the batteries should not be removed from the air bearing so that the air bearing's

CM is not significantly changed.

1. Disconnect the EMFG leads from the rear of the power source located next to the air

bearing

2. Connect the power inputs from the AstroFlight battery charger, which should be

located within the SSL

3. Before turning on the power source, turn the course voltage control knob counter

clockwise until it stops. This sets the voltage output to zero and ensures the battery

charger is not damaged when the power source is turned on

4. Turn on the power source and turn the course voltage control knob clockwise until

the battery charger registers just over 12 voltages at the input

5. Turn the "Amps Adjust" knob on the battery charger counter clockwise until it stops.

This sets the charging current to zero and protects the batteries while they are being

connected to the charger

6. Disconnect one of the batteries at the cable joint directly next each battery pack

7. Using the extension cable, connect the battery pack to the battery charger. The

charger should register that the battery is connected

8. Turn the "Amps Adjust" knob clockwise until it registers 6.5 Amps, which is the

correct charging current for the air bearing's battery packs

9. The battery charger will sound an alarm when the battery charge process is complete.

Disconnect the battery pack and return the "Amps Adjust" knob to zero

10. Repeat steps 5 through 9 for the remaining two battery packs

11. Reconnect the battery packs to their respective air bearing power cables and reconnect

the EMFG leads to the power supply
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A.3.4 Floating the Air Bearing

The following process explains how to properly float the air bearing.

1. Turn the large black knob on the top of the pressurized air filter assembly clockwise

until the gauge reads 50 PSI. Air flow through the support column should be heard

at this point

2. Identify the three support rods holding the rotating portion of the air bearing above

the support column, and remove the five screws holding the support rods in place.

One of the rods has one screw on the bottom and no screw on the top due to its

location below the center support truss

3. Grab the air bearing's safety ring directly out from one of the support rods and pull

towards yourself and slightly up, which will lift the air bearing up off of the support

rod

4. Remove the support rod and carefully lower the air bearing down into the support

bowl. Do not allow the hemisphere to fall into the bowl.

5. Once the air bearing is resting in the support bowl, continue to rotate the air bearing

down and remove the two remaining support rods on the opposite side of the air

bearing

The following process explains how to properly stow the air bearing.

1. Place one of the support rods in its correct location rotating the air bearing as neces-

sary to get it out of the way

2. Place the bottom screw in the support rod and tighten the screw so that it is fixed in

its position

3. Rotate the air bearing as necessary to start the top screw in the support rod. Leave

the screw loose so the air bearing can still be maneuvered

4. Place a second support rod in its correct location rotating the air bearing as necessary

to get it out of the way
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5. Place the bottom screw in the second support rod and tighten the screw to fix it in

place

6. Start the top screw in the second support rod, again leaving it loose to allow some air

bearing rotation

7. Grab the air bearing's safety ring directly out from the third support rod position and

pull towards yourself to lift the air bearing up enough to place the third support rod

in position

8. Place the bottom screw in the third support rod to fix it in place

9. Tighten all five screws attaching the three support rods

10. Turn the large black knob on the top of the pressurized air filter assembly counter

clockwise until all air pressure is dissipated and the gauge reads zero PSI

A.3.5 Operating the Air Bearing

The following process explains how to operate the air bearing once a program has been

uploaded to the Arduino processors and the air bearing has been floated.

1. The air bearing should be floating, the air bearing's avionics system should be powered

on, and the reaction wheel motor controllers should be powered off

2. Open the serial monitor by clicking the serial monitor button on the top of the Arduino

IDE at the ground station computer

3. On the air bearing's Main Arduino, press and release the small black reset button

to restart the uploaded program and ensure the reaction wheels are not being sent

commands

4. Turn on both reaction wheel motor controllers using the two black switches next to

the motor controllers

5. Manually place the air bearing in its desired initial angular orientation and press the

Main Arduino's black reset button again
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6. Hold the air bearing in place until data begins to stream back from the air bearing

as observed in the serial monitor on the ground station computer. Streaming data

indicates that the air bearing processors have completed initialization and entered the

estimation and control loop

7. If the reaction wheels are given zero initial angular velocity, the air bearing processors

will enter the est/control loop approximately five seconds after the last depression of

the Main Arduino's reset button. If the reaction wheels are given a nonzero initial

angular velocity, the user must continue holding the air bearing as the reaction wheels

spin up to achieve their initial angular velocities. After approximately fifteen seconds,

data will begin streaming in the serial monitor indicating the air bearing has entered

the est/control loop, and the air bearing may be released

A.3.6 Air Bearing Center of Mass Adjustment

Course adjustments can be made to the air bearing's CM by moving the battery packs up

and down their threaded attachment rods. The battery packs should be placed such that

the CM is as close to the center of rotation as possible using the rough adjustment method,

but still below the center of rotation. Once the battery packs have been adjusted and any

trim masses have been added to get the CM close to but just below the center of rotation,

the following process can be used for fine CM adjustment.

Fine adjustments to the air bearing's CM will use the cm-finder.m file in conjunction

with the air bearing's attitude estimation and control system. The cm.finder.m file can be

found at the below location on the ground station computer:

C:\Users\SSL User\Desktop\Air Bearing Simulation and Init File

The following process explains how to make fine adjustment to the air bearing's center

of mass using the cmilnder.m file.

1. Float the air bearing, turn on the air bearing's avionics system, upload a commanded

angular orientation profile of zero, and ensure that reaction wheel commanded and

measured angular rates are being sent to the ground station. Previous checklists

explain how to complete these tasks

2. Allow the air bearing to maintain its commanded zero attitude orientation until one of

the reaction wheels approaches saturation. Do not allow a reaction wheel to saturate
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3. Store the reaction wheel data in a text file, turn off the air bearing's reaction wheels,

and allow the wheels to return to zero angular velocity without slamming the air

bearing against its safety ring

4. In MATLAB, ensure that the measured reaction wheel angular velocity magnitudes

have the correct signs using the commanded reaction wheel angular velocities

5. Transfer the measured reaction wheel angular velocities to Excel and place a linear

best fit line on each of the three reaction wheel angular velocity plots

6. The slope of the best fit line represents each reaction wheel's constant angular accel-

eration due to gravitational torque acting on the air bearing

7. Enter the three constant angular acceleration coefficients into the three corresponding

locations in the cm-finder.m script file

8. Run the script file and record the x-adjust and y-adjust output values

9. For each of the ABBF x and y axis CM adjusters, adjust both CM adjusters in

each axis the distance required by the emifinder.m file. A positive value means that

both CM adjusters should be moved the given distance in the positive ABBF axis

direction, and visa versa for a negative value. The units of the x.adjust and y..adjust

values represent one hundredth of a millimeter, which is the minimum discretized

adjustment value on the CM adjusters

10. Repeat the fine CM adjustment process from the beginning until the torque due to

gravity is reduced to an acceptable amount
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Appendix B

Testbed Wiring Schematic
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Appendix

Provided Arduino Software
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C.1 Provided init.h Code

This code can be copied into a text file, named "init.h", and included in the Arduino's IDE
for use on the Main Arduino. However, this file should be created using the test.init.m
MATLAB script in Section C.6.

// initial values

int timestep = 205;

double
double
double

Ixx =
Iyy =

Izz =

4.077;
4.136;
2.322;

double Ia = 0.00725;

double deriv-gain = 1.50;

double Wx.estPrev = 0;

double Wy-estPrev = 0;

double WzestPrev = 0;

double Wx-cmd ffPrev =
double Wy-cmd-ff_Prev =
double Wz-cmdff_Prev =

double ixestPrev = 0;

double iy-estPrev = 0;

double izestPrev = 0;

double tx_pPrev = 0.00;
double ty-pPrev = 0.00;
double tz_pPrev = 0.00;

double wxpPrev = 0.00;
double wy-pPrev = 0.00;
double wz_pPrev = 0.00;

DCM_11_Prev

DCM_12_Prev

DCM_13_Prev

DCM_21_Prev

DCM_22_Prev
DCM_23_Prev

DCM_31_Prev

DCM_32_Prev

DCM_33_Prev

Ad_11

Ad_12

Ad_13

Ad_14

Ad_15

Ad_16

1.00000000;

0.00000000;
0.00000000;

0.00000000;

1.00000000;

0.00000000;

0.00000000;

0.00000000;

1.00000000;

1.00000000;

0.00000000;

0.00000000;

0.05004883;

0.00000000;

0.00000000;

double
double
double
double
double
double
double
double
double

double
double
double
double
double
double
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double Ad_21 = 0.00000000;
double Ad_22 = 1.00000000;
double Ad_23 = 0.00000000;
double Ad_24 = 0.00000000;
double Ad_25 = 0.05004883;
double Ad_26 = 0.00000000;
double Ad_31 = 0.00000000;
double Ad_32 = 0.00000000;
double Ad_33 = 1.00000000;
double Ad_34 = 0.00000000;
double Ad_35 = 0.00000000;
double Ad_36 = 0.05004883;
double Ad_41 = 0.00000000;
double Ad_42 = 0.00000000;
double Ad_43 = 0.00000000;
double Ad_44 = 1.00000000;

double Ad_45 = 0.00000000;
double Ad_46 = 0.00000000;

double Ad_51 = 0.00000000;
double Ad_52 = 0.00000000;
double Ad_53 = 0.00000000;
double Ad_54 = 0.00000000;
double Ad_55 = 1.00000000;
double Ad_56 = 0.00000000;
double Ad_61 = 0.00000000;
double Ad_62 = 0.00000000;
double Ad_63 = 0.00000000;
double Ad_64 = 0.00000000;
double Ad_65 = 0.00000000;
double Ad_66 = 1.00000000;

double Bd_11 = -0.00000091;

double Bd_12 = -0.00000091;
double Bd_13 = 0.00000182;
double Bd_21 = 0.00000156;
double Bd_22 = -0.00000156;
double Bd_23 = 0.00000000;
double Bd_31 = -0.00000226;
double Bd_32 = -0.00000226;
double Bd_33 = -0.00000226;
double Bd_41 = -0.00003640;
double Bd_42 = -0.00003640;
double Bd_43 = 0.00007281;

double Bd_51 = 0.00006216;

double Bd_52 = -0.00006216;
double Bd_53 = 0.00000000;
double Bd_61 = -0.00009043;
double Bd_62 = -0.00009043;
double Bd_63 = -0.00009043;

double L11 = 0.00000000;
double L12 = 0.00000000;
double L13 = 0.00000000;
double L14 = 0.00589659;
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double L15 = 0.00000000;
double L16 = 0.00000000;
double L17 = 0.30924972;
double L18 = 0.00000000;
double L19 = 0.00000000;
double L110 = 0.30924972;
double L111 = 0.00000000;
double L112 = 0.00000000;
double L21 = 0.00000000;
double L22 = 0.00000000;
double L23 = 0.00000000;
double L24 = 0.00000000;
double L25 = 0.00589659;
double L26 = 0.00000000;
double L27 = 0.00000000;
double L28 = 0.30924972;
double L29 = 0.00000000;
double L210 = 0.00000000;
double L211 = 0.30924972;
double L212 = 0.00000000;
double L31 = 0.00000000;
double L32 = 0.00000000;
double L33 = 0.00000000;
double L34 = 0.00000000;
double L35 = 0.00000000;
double L36 = 0.00589659;
double L37 = 0.00000000;
double L38 = 0.00000000;
double L39 = 0.30924972;
double L310 = 0.00000000;
double L311 = 0.00000000;
double L312 = 0.30924972;
double L41 = 0.00000000;
double L42 = 0.00000000;
double L43 = 0.00000000;
double L44 = 0.49975695;
double L45 = 0.00000000;
double L46 = 0.00000000;
double L47 = 0.00589659;
double L48 = 0.00000000;
double L49 = 0.00000000;
double L410 = 0.00589659;
double L411 = 0.00000000;
double L412 = 0.00000000;
double L51 = 0.00000000;
double L52 = 0.00000000;
double L53 = 0.00000000;
double L54 = 0.00000000;
double L55 = 0.49975695;
double L56 = 0.00000000;
double L57 = 0.00000000;
double L58 = 0.00589659;
double L59 = 0.00000000;
double L510 = 0.00000000;
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double L511 = 0.00589659;
double L512 = 0.00000000;
double L61 = 0.00000000;
double L62 = 0.00000000;
double L63 = 0.00000000;
double L64 = 0.00000000;
double L65 = 0.00000000;
double L66 = 0.49975695;
double L67 = 0.00000000;
double L68 = 0.00000000;
double L69 = 0.00589659;
double L610 = 0.00000000;
double L611 = 0.00000000;
double L612 = 0.00589659;

double K11 = -87.82774816;
double K12 = 152.19152231;
double K13 = -121.24598643;
double K14 = -342.61780520;
double K15 = 595.11716726;
double K16 = -437.88622843;
double K21 = -87.82774816;
double K22 = -152.19152231;
double K23 = -121.24598643;
double K24 = -342.61780520;
double K25 = -595.11716726;
double K26 = -437.88622843;
double K31 = 175.65549631;

double K32 = -0.00000000;
double K33 = -121.24598643;
double K34 = 685.23561041;
double K35 = 0.00000000;

double K36 = -437.88622843;
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C.2 Provided matrix.h Code

This code can be copied into a text file, named "matrix.h", and included in the Arduino's
IDE for use on the Main Arduino.

// Initialize Required Variables

double Sl, S12,S13,S21,S22,S23,S31,S32,S33;

double cll,c12,c13,c21,c22,c23,c31,c32,c33;

double dl_2, d12_2, d13_2, d21_2,d22_2,d23_2,d31_2,d32_2,d33_2;

double dll_3,d12_3,d13_3, d21_3,d22_3,d23_3,d31_3,d32_3,d33_3;
double dll_4,d12_4,d13_4, d21_4,d22_4,d23_4, d31_4,d32_4,d33_4;

double dl1_5, d12_5, d13_5,d21_-5,d22.5,d23_5, d31_5,d32_5,d33_5;
double dl1_6, d12_6, d13_6,d21_6,d22_6,d23_6, d31_6, d32_6, d33_6;
double dl1_7,dl2_7,dl3_7,d21_7,d22_7,d23_7,d31_7,d32_7,d33_7;

double dl_8, d12_8, dl38,d21_8, d22_8, d23_8, d31_8 d32_8, d33_8;
double outll,outl2,outl3,out2l,out22,out23,out3l,out32,out33;
double gl,g2,g3;

double norm;

// Required Mathematical Functions

// skew function
double skew(double first, double second, double third)

S1l = 0;

S12 = -third;

S13 = second;

S21 = third;
S22 = 0;

S23 = -first;
S31 = -second;

S32 = first;

S33 = 0;
return S11,S12,S13,S21,S22,S23,S31,S32,S33;

}

// three by three matrix multiply function
double mat-mult(double all, double a12, double a13, double a21, double a22,

double a23, double a31, double a32, double a33, double bl, double b12,
double b13, double b21, double b22, double b23, double b31, double b32,
double b33)

{
cl = all*bll+a12*b21+a13*b31;
c12 = all*b12+a12*b22+a13*b32;
c13 = all*b13+a12*b23+a13*b33;
c21 = a2l*bll+a22*b21+a23*b31;
c22 = a21*b12+a22*b22+a23*b32;
c23 = a21*b13+a22*b23+a23*b33;
c31 = a31*bll+a32*b21+a33*b31;
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c32 = a31*b12+a32*b22+a33*b32;
c33 = a31*b13+a32*b23+a33*b33;
return cll,c12,c13,c21,c22,c23,c31,c32,c33;

}

// three by three matrix exponential function

double expm(double d11_1, double d12_1, double d13_1, double d21_1,

double d22_1, double d23_1, double d31_1, double d32_1, double d33_1)

{
mat_mult(d11_1,d12_1,d13_1,d21_1,d22_1,d23_1,d31_1,d32_1,d33_1,

dll_1,d12_1,d13_1,d21_1,d22_1,d23_1,d3l1_,d32_1,d33_1);

dll2=cll; d12_2=c12; d13_2=c13; d21_2=c21, d22_2=c22;

d23_2=c23; d31_2=c31, d32_2=c32, d33_2=c33;

mat-mult(d11_2,d12_2,d13_2,d21_2,d22_2,d23_2,d31_2,d32_2,d33_2,

d11_1,d12_1,d13_1,d21_1,d22_1,d23_1,d31_1,d32_1,d33_1);

d11_3=c11; d12_3=c12; d13_3=c13; d21_3=c21, d22_3=c22;

d23_3=c23; d31_3=c31, d32_3=c32, d33_3=c33;

mat-mult(d11_3,d12_3,d13_3,d2l_3,d22_3,d23_3,d3l3,d32_3,d33_3,

dll1,d12_,d13_1,d2l_1,d22_1,d23_1,d3l_1,d32_1,d33_1);

d11_4=c11; d12_4=c12; d13_4=cl3; d21_4=c21, d22_4=c22;

d23_4=c23; d31_4=c31, d32_4=c32, d33_4=c33;

mat-mult(d11_4,d12_4,d13_4,d21_4,d22_4,d23_4,d314,d32_4,d33_4,
d111,d121,d131,d2ld22,d23,d3_1,d31,d321,d33_1);

dl_5=c11; d12_5=c12; d13_5=c13; d21_5=c21, d22_5=c22;

d23_5=c23; d31_5=c31, d32_5=c32, d33_5=c33;

mat-mult(d11_5,d12_5,d13_5,d2l5,d22_5,d23_5,d31_5,d32.5,d33_5,
dll_,dl2_1,d13_1,d21l,d22_1,d23_1,d31_,d32_1,d33_1);

dl_6=cll; d12_6=c12; d13_6=c13; d21_6=c21, d22_6=c22;

d23_6=c23; d31_6=c31, d32_6=c32, d33_6=c33;

mat-mult(d11_6,d12_6,d13_6,d216,d22_6,d23_6,d31_6,d32_6,d33_6,

d1l1,d12_,d13_1,d211,d22_1,d23_1,d31_1,d32_1,d33_1);

dl_7=c11; d12_7=c12; d13_7=c13; d21_7=c21, d22_7=c22;

d23_7=c23; d31_7=c31, d32_7=c32, d33_7=c33;

mat-mult(d11_7,d12_7,d13_7,d21_7,d22_7,d23_7,d31_7,d32_7,d33_7,
d11_1,d12_1,d131,d21_1,d22_1,d23_1,d31_1,d32_1,d33_1);

d11_8=c11; d12_8=c12; d13_8=c13; d21_8=c21, d22_.8=c22;

d23_8=c23; d31_8=c31, d32_8=c32, d33_8=c33;

out1l = 1 + d11_1 + d11_2/2 + d113/6 + d11_4/24 + d11_5/120

+ d116/720 + d11_7/5040 + d118/40320;
out12 = d12_1 + d122/2 + d12_3/6 + d124/24 + d12_5/120
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+ d12_6/720 + d127/5040 + d128/40320;
out13 = d13_1 + d132/2 + d13_3/6 + d13.4/24 + d135/120

+ d13_6/720 + d13_7/5040 + d138/40320;

out2l = d21_1 + d212/2 + d21_3/6 + d21_4/24 + d215/120
+ d21_6/720 + d217/5040 + d2l8/40320;

out22 = 1 + d22_1 + d22_2/2 + d22_3/6 + d224/24 + d225/120
+ d22_6/720 + d227/5040 + d22_8/40320;

out23 = d23_1 + d232/2 + d23_3/6 + d23_4/24 + d235/120
+ d23_6/720 + d237/5040 + d23_8/40320;

out3l = d31_1 + d312/2 + d31_3/6 + d31_4/24 + d315/120
+ d31_6/720 + d317/5040 + d3l8/40320;

out32 = d32_1 + d32_2/2 + d32_3/6 + d324/24 + d325/120
+ d32_6/720 + d327/5040 + d328/40320;

out33 = 1 + d33_1 + d332/2 + d33_3/6 + d334/24 + d335/120
+ d33_6/720 + d33_7/5040 + d338/40320;

return out11,out12,out13,out21,out22,out23,out31,out32,out33;

}

// three by one vector cross product function

double cross(double el, double e2, double e3, double f1, double f2, double f3)

{
g1 = e2*f3-e3*f2;

g2 = e3*fl-el*f3;

g3 = el*f2-e2*f1;

return gl,g2,g3;

}

// three by one vector magnitude function
double mag(double hi, double h2, double h3)

{
norm = sqrt(h1*hl+h2*h2+h3*h3);
return norm;
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C.3 Provided functions.h Code

This code can be copied into a text file, named "functions.h", and included in the Arduino's
IDE for use on the Main Arduino.

// Initialize Required Byte Manipulations and Pins

#define UBLB16(a,b) ( (a << 8)1(b) )&OxFFFF;

#define UBLB14(a,b) (((a << 8)|(b))&0x3000);
#define UBLB12(a,b) ( (a << 8)1(b) )&OxOFFF;
#define UBLB2(a,b) ( Ca << 8)1(b) )&0x8000;
#define UBLB15(a,b) C (a << 8)1(b) )&Ox7FFF;

#define RESETPIN 45//reset

#define DATAREADY 47//drdy

#define SLAVESELECTMAG 49//ss

#define DATAIN 50//MISO

#define DATAOUT 51//MOSI

#define SPICLOCK 52//sck

#define SLAVESELECT 53//ss

// Initialize Required Variables

// initialize all IMU read variables

byte globe-name=B0111110; // Read everything

byte supply-bl,supply-b2,x-gyrobl,x-gyro-b2,y.gyro-bl,ygyro-b2,zgyro-bl;

byte zgyrob2,x_acc_b1,x_acc-b2,yacc-bl,y-acc-b2,z_acc_biz_accb2;

byte x-tempbl,x-temp-b2,y-tempbl,y-temp-b2,z.temp-bl,ztemp.b2;

byte aux_bi,aux-b2,clr;

// initialize all magnetometer variables

byte x-datal,x-data2,ydatal,ydata2,z-datal,z-data2;

int sign,mag-abs,magval;

int x-mag,y-mag,zmag;

int x-mag-ref,ymagref,zmag-ref;
long x-mag-hold=0,y-mag-hold=0,zmag-hold=0;

double x-posgain = 1.298;
double x-neg-gain = 1.088;

double y-pos-gain = 1.000;

double y-neggain = 1.060;

double zbias;

// initialize reaction wheel variables

double RW1_ComSpeed,RW2_ComSpeed,RW3_ComSpeed;

double RW4_ComSpeed = 0;
double RW1_ComSpeed-abs,RW2_ComSpeed-abs,RW3_ComSpeed-abs;

double RW4_ComSpeed-abs = 0;
double ComSpeed1,ComSpeed2,ComSpeed3;

double ComSpeed4 = 0;
long ComDir1,ComDir2,ComDir3;
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long ComDir4 = OxC8;
long MotorSpeedi = 0;
long MotorSpeed2 = 0;
long MotorSpeed3 = 0;
long MotorSpeed4 = 0;
long MotorDir = OxCO;
long MotorDir2 = OxC8;
long MotorDir3 = OxCO;
long MotorDir4 = OxC8;

// Define Required Functions

// define spi write to IMU function
byte writeIMEJ(byte first, byte second)

SPCR = B01011101;

digitalWrite(SLAVESELECT,LOW);

SPI.transfer(first);
SPI.transfer(second);
digitalWrite(SLAVESELECT,HIGH);

}

// define spi global read to IMU function
byte globe-read(byte globe-name)

f
SPCR = B01011101;

digitalWrite(SLAVESELECT,LOW);
clr = SPI.transfer(globe-name);
clr = SPI.transfer(B00000000);
supply-bl = SPI.transfer(B00000000);
supply-b2 = SPI.transfer(B00000000);
x-gyro-bl = SPI.transfer(B00000000);
x-gyro-b2 = SPI.transfer(BOOOOOOOO);
y-gyro-bl = SPI.transfer(BOOOOOOOO);
y-gyro-b2 = SPI.transfer(B00000000);
z-gyro-bl = SPI.transfer(B00000000);
z-gyro-b2 = SPI.transfer(B00000000);
x_acc_b1 = SPI.transfer(B00000000);
x_accb2 = SPI.transfer(B00000000);
y-acc-bl = SPI.transfer(B00000000);
y-acc-b2 = SPI.transfer(BOOOOOOOO);
z_acc_b1 = SPI.transfer(BOOOOOOOO);
z_accb2 = SPI.transfer(BOOOOOOOO);
x-temp-bl = SPI.transfer(B00000000);
x-temp-b2 = SPI.transfer(B00000000);
y-temp-b1 = SPI.transfer(B00000000);
y-temp-b2 = SPI.transfer(BOOOOOOOO);
z-temp-b1 = SPI.transfer(B00000000);
z-temp-b2 = SPI.transfer(B00000000);
aux_b1 = SPI.transfer(B00000000);
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auxb2 = SPI.transfer(BOOOOOOOO);
digitalWrite(SLAVESELECT,HIGH);

return supply-bl,supply-b2,x-gyro-b1,x-gyro-b2,y-gyro-bl,y-gyro-b2,zgyro-bl,
z_gyro-b2,x-acc-bl,x-acc-b2,y-acc-b1,yacc-b2,z_accbl,z-acc-b2,

x_temp-bl,x-temp-b2,y-temp-bl,y-temp-b2,z-temp-bl,z_temp_b2,

aux_b1,auxb2;

}

// define spi write to magnetometer function

byte read-mag()

{
SPCR = B01010001;

digitalWrite (SLAVESELECTMAG, LOW);

digitalWrite (RESETPIN, HIGH);

digitalWrite(RESETPIN,LOW);

SPI.transfer(B1000001);
while(digitalRead(DATAREADY) == LOW)

{}
x_data1 = SPI.transfer(BOOOOOOOO);
x_data2 = SPI.transfer(B00000000);

digitalWrite (RESETPIN, HIGH);

SPI.transfer(BO1000010);
while(digitalRead(DATAREADY) == LOW)

{}
y-data1 = SPI.transfer(BOOOOOOOO);
y..data2 = SPI.transfer(B00000000);

digitalWrite (RESETPIN, HIGH) ;

digitalWrite (RESETPIN,LOW);

SPI.transfer(BO1000011);

while(digitalRead(DATAREADY) == LOW)

{}
z_datal = SPI.transfer(BOOOOOOOO);
z_data2 = SPI.transfer(BOOOOOOOO);

digitalWrite (SLAVESELECTMAG, HIGH);

return x-datal,x-data2,y-datal,y-data2,z_datalz_data2;

}

// define function to decode raw magnetometer data

int decode-mag(byte first,byte second)

f
sign = UBLB2(first,second);
mag-abs = UBLB15(first,second);

if (sign == Ox8OOO)
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mag-val = mag-abs-32768;
}
else

m
mag..val = mag-.abs;

return magval;

}

// define function
byte init-mag()

f

to initialize magnetic field vector

for (nt i = 1; i < 101; i++)

readmagO;

decode-mag(x-datal,x-data2);

x-mag-hold = xmag-hold+mag-val;

decode-mag (y-datal, y-data2);
y-mag-hold = y-mag-hold+mag-val;

decode-mag (z-datal, z-data2);
z-mag-hold = zmaghold+mag-val;

delay(50);

}

x...magref =xjmaghold/100;
y-mag-ref = -y-mag-hold/100;

z_bias = -z-mag-hold/100;
z-mag-ref = 0;

return x-mag-ref,ymag-ref,zmag-ref;

// set reaction wheels to initial commanded speed
double init-rw(double xinitdouble y-init,double z_init)

RW1_ComSpeed = x-init;
RW2_ComSpeed = y-init;
RW3_ComSpeed = z-init;

// absolute value of commanded reaction wheel angular rate
RW1_ComSpeed-abs = abs(x-init);
RW2_ComSpeed-abs = abs(y-init);
RW3_ComSpeed-abs = abs(z-init);
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// convert from radians per second to motor controller byte representation

ComSpeed1 = map(RW1_ComSpeedabs, 0, 194, 0, 127);
ComSpeed2 = map(RW2_ComSpeedabs, 0, 194, 0, 127);
ComSpeed3 = map(RW3_ComSpeedabs, 0, 194, 0, 127);

// determine reaction wheel direction command for motor controller

if (RW1_ComSpeed >=0)

ComDirl = OxC2;

}
else

ComDirl = OxC1;

}

if (RW2_ComSpeed >=0)

ComDir2 = OxCA;

}
else

ComDir2 = OxC9;

}

if (RW3_ComSpeed >=0)

f
ComDir3 = OxC2;

}
else

f
ComDir3 = OxC1;

}

Seriall.write(ComDirl);
Seriall.write(ComSpeed1);

Seriall.write(ComDir2);
Seriall.write(ComSpeed2);

Seriall.write(ComDir3);
Seriall.write(ComSpeed3);

Seriall.write(ComDir4);

Seriall.write(ComSpeed4);

MotorDir = ComDirl;

MotorSpeed1 = ComSpeed1;
MotorDir = ComDir2;

MotorSpeed1 = ComSpeed2;
MotorDir = ComDir3;

MotorSpeed1 = ComSpeed3;
MotorDir = ComDir4;

MotorSpeed1 = ComSpeed4;
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Seriall.flusho;

delay(10000);

// print desired variable
// post-flag definition
// 1 - Print variable
// 2 - Print variable

// 3 - Print variable
double serial-out(double

{
if (post-flag == 1)
{
Serial.print(output);

Serial.print("\t");

}
if (post-flag == 2)

{
Serial.print(output);

Serial.print("\t");
Serial.print("\t");

}
if (postflag = 3)

followed by one tab
followed by two tabs

and go to new line
output, int post-flag)

Serial.println(output);

}

// similar to serialout, but prints space after var for seriallabel function
double serial.post(int post-flag)

{
if (post-flag == 1)

{
Serial.print("\t");

}
if (post-flag == 2)

{
Serial.print("\t");
Serial .print ("\t");

}
if (post-flag == 3)

{
Serial.println(" ");

// print labels to serial port
double seriallabel()

{
if (timekeep-flag == 1)

if (RealDeltaTflag == 1)

{Serial. print ("time");
serial-post(timekeeppost);}

{Serial.print("dt");

serial.post(RealDeltaT-post);}
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if (DeltaT-f lag == 1)

if (RW1_ComSpeed-flag == 1)

if (RPS1_flag == 1)

if (RW1Volt-flag == 1)

if (RW2_ComSpeed-flag == 1)

if (RPS2_flag == 1)

if (RW2_Volt-flag == 1)

if (RW3_ComSpeed-flag == 1)

if (RPS3_flag == 1)

if (RW3_Volt-flag == 1)

if (xComPos-flag == 1)

if (yComPos-flag == 1)

if (zComPos-flag == 1)

if (xComRate-flag = 1)

if (yComRate-flag = 1)

if (zComRate-flag = 1)

if (tx-p.flag = 1)

if (ty-pflag = 1)

if (tz-p-flag = 1)

if (wx-p.flag = 1)

if (wyp-flag = 1)

if (wz-p.flag = 1)

if (wx-dot-p.flag == 1)

if (wy-dot-p-flag == 1)

if (wz-dot-p.flag == 1)

if (RPS4_flag == 1)

if (x-gyro-flag == 1)

{Serial.print("dt cnts");
serialpost(DeltaT-post);}

{Serial.print("RW1 com");

serial-post(RW1_ComSpeed-post);}

{Serial.print("RW1 RPS");

serial-post(RPS1_post);}

{Serial.print("RW1 vlts");
serial-post(RW1_Volt-post);}

{Serial.print("RW2 com");

serial-post(RW2_ComSpeed-post);}

{Serial.print ("RW2 RPS");
serial-post(RPS2_post);}

{Serial.print("RW2 vlts");
serial-post(RW2_Volt-post);}

{Serial.print("RW3 com");
serial-post(RW3_ComSpeed-post);}

{Serial.print("RW3 RPS");
serial-post(RPS3_post);}

{Serial.print("RW3 vlts");

serial-post(RW3_Volt-post);}

{Serial.print ("xComPos");

serial-post(xComPospost);}

{Serial.print ("yComPos");

serialpost(yComPos-post);}

fSerial.print ("zComPos");
serialpost(zComPos-post);}

{Serial.print("xCmRate");

serial-post(xComRatepost);}

{Serial.print ("yCmRate");

serial-post(yComRatepost);}

{Serial.print ("zCmRate");

serial-post(zComRatepost);}
{Serial.print ("xEstPos");

serial-post(tx-p-post);}
{Serial.print("yEstPos");

serial-post(ty-p.post);}
{Serial.print("zEstPos");
serial-post(tz-p-post);}

{Serial.print ("xEsRate ");
serial-post(wx.p-post);}

{Serial.print("yEsRate");
serial-post(wy-p-post);}

{Serial.print ("zEsRate");
serial-post(wz-p-post);}

{Serial.print("xEstAcc");
serial-post(wx-dotp-post);}

{Serial.print("yEstAcc");

serial-post(wy-dot-p-post);}

{Serial.print("zEstAcc");

serial-post(wz-dot-p-post);}
{Serial .print("RW4 RPS");
serial-post(RPS4_post);}

{Serial .print ("rawIMUx");

serial-post(x-gyro-post);}
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if (y-gyro-flag == 1)

if (zgyro-flag == 1)

if (xMeasRate flag == 1)

if (yMeasRate-flag == 1)

if (zMeasRate-flag == 1)

if (xMeasPosflag == 1)

if (yMeasPosflag = 1)

if (zMeasPos_flag = 1)

if (xacc-flag == 1)

if (yaccflag == 1)

if (z-acc.flag == 1)

if (xjmag-flag == 1)

if (y-mag-flag == 1)

if (zjmag-flag == 1)

if (xMag-flag == 1)

if (yMag.flag == 1)

if (zMag.flag == 1)

if (Wxest.flag == 1)

if (Wyestflag == 1)

if (Wz-estflag == 1)

if (x-gravflag == 1)

if (y.grav.flag == 1)

if (z.gravflag == 1)

if (xgravposflag == 1)

if (y-gravpos_flag == 1)

if (z-gravpos_flag == 1)

if (x-mag-cmd-flag == 1)

{Serial.print ("rawIMUy");
serial-post(y-gyropost);}

{Serial.print(IrawIMUz");
serial-post (z.gyro-post) ;}
{Serial.print ("xRteMea");
serial-post (xMeasRate-post) ;}

{Serial.print("yRteMea");
serial-post(yMeasRate-post);}

{Serial.print("zRteMea");
serialpost(zMeasRate-post);}

{Serial.print("IMUxPos");

serial-post(xMeasPos-post);}

{Serial.print("IMUyPos");
serial-post(yMeasPos-post);}

(Serial.print("IMUzPos");
serial-post(zMeasPos-post);}

{Serial.print("xGrvMea");
serial-post(x-acc-post);}

{Serial.print("yGrvMea");
serial.post(y-acc-post);}

{Serial. print ("zGrvMea");
serial-post(z-accpost);}

{Serial.print("rawMagx");
serial-post (x-mag-post) ;}

(Serial.print ("rawMagy");
serial-post(y-mag-post);}

{Serial.print("rawMagz");
serial-post(z-mag-post);}

(Serial.print(" xMagMea");
serial-post(xMag-post);}

(Serial.print("yMagMea");
serial-post(yMag-post);}

(Serial. print ("zMagMea");
serial-post(zMag-post);}
{Serial.print("RW1SSEs");

serial-post(Wx-est-post);}

(Serial.print ("RW2SSEs");
serialpost(Wyest-post);}

(Serial.print("RW3SSEs");
serial-post(Wz-est-post);}

{Serial.print("xGrvCom");
serial-post(x-grav-post);}

{Serial.print ("yGrvCom");
serial-post (y-gravpost) ;}

{Serial.print("zGrvCom");
serial-post(z-grav-post);}

(Serial.print("AccxPos");
serial-post(x-gravpos-post);}

(Serial.print("AccyPos");

serial-post(y-grav-pospost);}

(Serial.print(" AcczPos");
serial-post(z-grav-pos-post);}

{Serial.print(" xMagCom");
serial-post(x-mag-cmd-post);}
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if (yjmag-cmdf lag = 1)

if (zjmag-cmd-flag = 1)

if (xjmag-pos-flag = 1)

if (yjmag-pos-flag = 1)

if (z-mag-pos-flag = 1)

{Serial.print("yMagCom");
serial-post(y-mag-cmd-post);}

{Serial.print("zMagCom");
serialpost(z-mag.cmd-post);}

{Serial. print ("MagxPos");
serial-post(xjmag-pos-post);}

{Serial.print("MagyPos");

serialpost(y-mag-pos.post);}

{Serial.print("MagzPos");

serial-post(z-mag-pos-post);}
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C.4 Provided mega-main.pde Code

This code can be copied directly into the Arduino's IDE, named "mega-main.pde" and
uploaded to the Main Arduino. Be sure to include the three required header files listed
above before uploading to the Main Arduino. Remember to update the commanded air
bearing angular orientation and rate as necessary.

// Set Desired Outputs

Flag instructions

0 - Do Not Print
1 - Print

Post instruction

1 - Print with one

2 - Print with two

3 - Print with new

tab after value
tabs after value

line after value

int timekeep-flag
int RealDeltaT-flag
int DeltaT-flag

int
int
int

RW1_ComSpeedflag

RPS1_flag

RW1_Volt-flag

int RW2_ComSpeed-flag
int RPS2_flag
int RW2_Volt-flag

int RW3_ComSpeed-flag
int RPS3_flag
int RW3_Volt-flag

int xComPos-flag
int yComPos-flag
int zComPos-flag

int xComRate-flag
int yComRate-flag
int zComRate-flag

int tx-p-flag
int ty-p-flag
int tz.p-flag

int wx-p-flag
int wy.p-flag
int wz-p-flag

int wxdot-p-flag
int wy-dot-p-flag
int wzdot-p-flag

int RPS4_flag

int timekeep-post
int RealDeltaT-post

int DeltaT-post

int
int
int

RW1_ComSpeed.post

RPS1_post

RW1_Volt-post

int RW2_ComSpeedpost
int RPS2_post
int RW2_Volt-post

int RW3_ComSpeed-post
int RPS3_post
int RW3_Volt-post

int xComPos-post
int yComPos-post
int zComPos-post

int xComRate-post
int yComRate-post
int zComRate-post

int tx-p-post
int ty-p-post
int tz-p.post

int wx-p-post
int wy-p-post
int wzp-post

= 0;
= 0;
= 0;

= 0;

int
int
int

wx-dot-p-post
wy-dot-p-post
wz-dot-p-post

int RPS4_post

= 1;

= 2;

= 2;

= 1;

= 2;

= 2;

= 1;

= 2;

= 2;

= 1;

= 2;

= 2;

= 1;

= 1;

= 2;

= 1;
= 1;

= 2;

= 1;

= 1;

= 2;

= 1;

= 1;

= 3;

= 1;

= 1;

= 2;

= 2;
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int x-gyro-flag
int y-gyro-flag

int z-gyro-flag

int xMeasRateflag
int yMeasRate-flag

int zMeasRate-flag

int xMeasPos-flag

int yMeasPosflag
int zMeasPos-flag

int xaccflag

int y-acc-flag
int zaccflag

int x-mag.flag
int y-mag-flag
int z-mag-flag

int xMag-flag

int yMag-flag
int zMag-flag

int Wxestflag

int Wy-est-flag
int Wzestflag

int x-grav-flag

int y.grav.flag
int z-grav-flag

int x-grav-pos-flag
int y-grav-pos_flag

int z-grav-pos.flag

int x-mag-cmd-flag

int y.mag-cmd-flag
int z-mag-cmdflag

int x-magpos.flag

int y-mag-pos-flag

int z-mag-pos-flag

int x-gyro-post
int y-gyro-post
int z-gyro-post

int xMeasRate-post
int yMeasRate-post
int zMeasRate-post

int xMeasPos-post
int yMeasPos-post

int zMeasPos-post

int x-acc-post
int y-acc-post
int z-acc-post

int x-mag-post

int y-mag-post

int z-mag-post

int xMag-post

int yMag-post
int zMagpost

int Wx.est-post

int Wy-est-post

int Wz-est-post

int x-grav.post
int y-grav.post

int z.grav-post

int x-gravpospost
int y-gravpos.post

int z-grav-pos-post

int x-mag-cmd-post

int y-mag-cmd-post

int z-mag-cmd-post

int x-mag-pos-post

int y-mag-pos-post

int z-mag-pos-post

// Initialize Required Variables and Header Files

#include <Wire.h>

#include <SPI.h>

#include "matrix.h"

#include "init.h"

#include "functions.h"

int progPin = 9;
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// define gyroscope and accelerometer gains
double gyro-gain = 0.0125;
double acc-gain = 0.00333;

double RAD = 3.141593/180;
double DEG = 180/3.141594;

int x-gyro.sign = 0;
double xgyro;

int y-gyro.sign = 0;
double y-gyro;

int z-gyro-sign = 0;
double zgyro;

int xaccsign = 0;
double xacc;

int y-acc-sign = 0;
double y.acc;

int zaccsign = 0;
double zacc;

// initialize time variables
long timercounter = 0;
double freq = 4096;
double timekeep = 0;
double DeltaT = 0;

double RealDeltaT = 0;

byte encodel_b1 = 0;
byte encodelb2 = 0;
byte encodelb3 = 0;
byte encodelb4 = 0;

byte encode2_b1 = 0;
byte encode2_b2 = 0;
byte encode2_b3 = 0;
byte encode2_b4 = 0;

byte encode3_b1 = 0;
byte encode3_b2 = 0;
byte encode3_b3 = 0;
byte encode3_b4 = 0;

byte encode4_bl = 0;
byte encode4_b2 = 0;
byte encode4_b3 = 0;
byte encode4_b4 = 0;

long EncoderRW1, EncoderRW2,EncoderRW3,EncoderRW4;
long EncoderRW1_prev,EncoderRW2_prev,EncoderRW3_prev,EncoderRW4_prev;
double ThresSpeed1,ThresSpeed2,ThresSpeed3;
double ThresSpeed4 = 0;
double RPS1,RPS2,RPS3,RPS4;

double RPM1,RPM2,RPM3,RPM4;
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double xMeasPos,yMeasPos,zMeasPos;

double xMeasPosPrev,yMeasPosPrev,z_MeasPosPrev;

double xMeasRate,yMeasRate,z_MeasRate;

double Wx-est,Wy-estWzest,ix-est,iy-est,iz-est;

double Wx-dot-est,Wy-dot_est,Wz-dotest;

double Delta-x-pos,Delta-y-posDelta_z_pos;

double Delta_11,Delta_12,Delta_13,Delta_21,Delta_22,Delta_23;
double Delta_31,Delta_32,Delta_33;

double DCM_11,DCM_12,DCM_13,DCM_21,DCM_22,DCM_23,DCM_31,DCM_32,DCM_33;

double dDCM_11,dDCM_12,dDCM_13,-2l,d21,dDCM-22,dDCM_23;

double dDCM_31,d_DCM_32,dDCM_33;

double x-grav,y-grav,z-grav;
double x-grav.pos,y-grav-pos ,z.gravypos;

double x-grav.innov,y-grav-innov,z.grav.innov;
double xmag-cmd,y-mag-cmd,zmagcmd;
double xmag-pos,ymagpos,z.mag.pos;

double xMag,yMag,zMag;
double norm-mag.cmd,normMag;

double x-mag-innov,y.mag-innov,z-mag-innov;
double xpos.innov,y-pos-innov,z.pos.innov;
double x_rate_innov, y-rate-innov, z-rateinnov;

double tx_n,ty-n,tz-n,wx-n,wy-n,wzn;
double tx.p,typ,tz-p,wx.p,wy.p,wz.p;
double wx-dot-p,wy.dot-p,wz-dot-p;
double Wx-cmd,Wy-cmd,Wz-cmd;

double Wx-dotcmd,Wy-dot-cmd,Wz-dotcmd;

double Wx-dot-cmd-lr,Wy-dot-cmdlqr,Wz-dotcmd_lqr;

double Wxdotcmdrd,Wy-dot-cmd-rd,Wz-dot-cmd_rd;

double wxdotcmdrd,wy-dot-cmd-rd,wz-dot-cmdrd;

double Wxdotcmdcl,Wy-dotcmd-cl,Wz-dot-cmd_cl;

double Wx-cmdcl,Wy-cmd-cl,Wzcmdcl;

double Wx-cmdclPrev = 0;
double Wy-cmdclPrev = 0;
double Wz-cmdclPrev = 0;
double Wxcmdf f ,Wycmdf f,Wz-cmdff;
double Wx-dotcmdff,Wy-dot-cmd-ff,Wz-dot-cmd_ff;

double wxdot-cmd,wy-dot-cmd,wz-dotcmd;

double xComPos,yComPos,zComPos;

double xComPosPrev,yComPosPrev,zComPosPrev;
double xComRate,yComRate,z_ComRate;

double x_ComRatePrev,yComRatePrev,zComRatePrev;

double xComAcc,yComAcc,zComAcc;

double xErrPos,yErrPosz_ErrPos;

double xErrRate,yErrRate,zErrRate;

double xErrAcc,yErrAcc,zErrAcc;

double RW1_Volt,RW2_VoltRW3_Volt;

double D11 = cos(65.9052*RAD);
double D12 = cos(65.9052*RAD);
double D13 = cos(144.7356*RAD);
double D21 = cos(135*RAD);
double D22 = cos(45*RAD);
double D23 = cos(90*RAD);
double D31 = cos(54.7356*RAD);

233



double D32 = cos(54.7356*RAD);
double D33 = cos(54.7356*RAD);

// Initialize Estimation/Control Loop

void setup()

Serial.begin(57600); // port between main arduino and GS computer
Seriall.begin(115200); // port between main arduino and aux arduino

Serial.flush();
Serial.println("Initializing..."); Serial.println(" ");

Wire.begin();

Wire.beginTransmission(0x68);

Wire.send(0);

Wire.send(OxOO);

Wire.send(OxOO);

Wire.send(Ox80);

Wire.send(OxOl);

Wire.send(OxOl);

Wire.send(OxOl);

Wire.send(OxlO);

Wire.send(Oxl);

Wire.endTransmissiono;

// activate DS1307
// where to begin
//seconds
//minutes
//hours (24hr time)

// Day 01-07

// Date 0-31
// month 0-12
// Year 00-99

pinMode(progPin, OUTPUT);

pinMode (DATAOUT, OUTPUT);

pinMode(DATAIN, INPUT);

pinNode (SPICLOCK, OUTPUT);

pinMode (SLAVESELECT,OUTPUT);
pinMode(SLAVESELECTMAG,OUTPUT);
pinMode(DATAREADY, INPUT);
pinMode (RESETPIN, OUTPUT);

digitalWrite(SLAVESELECT,HIGH);
digitalWrite (SLAVESELECTMAG, HIGH);
digitalWrite(RESETPIN, LOW);

clr=SPSR;
clr=SPDR;

delay(10);
writeIMU(B10110110,B00000001);

delay(10);
writeIMU(B10111001,B00000001);

delay(10);
writeIMU(B10111000,B00000100);

I/ set internal sample rate - default

I/ set measurement range - 75 deg/sec

1/ set number of poles - 16

// determine initial magnetic field vector

init-mag(;
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// set initial reaction wheel angular velocity

double rw-init-mag;

rwinitmag = sqrt(Wx-cmdffPrev*Wx-cmd-ffPrev
+Wy-cmd-ffPrev*Wy-cmdffPrev+Wz_cmd_f_Prev*Wzcmd-ffPrev);

if (rw-init-mag > 0)
f
init-rw(WxcmdffPrev,Wy-cmdff_Prev,Wzcmd_ff_Prev);

}

// print label to serial port

seriallabel();

// initialize interrupts for timing module

attachInterrupt(0, timer2, RISING);

interrupts();

}

// Begin Estimation/Control Loop

void loop()

if (timercounter >= timestep)

digitalWrite(progPin, HIGH);

timekeep = timekeep+timercounter/freq;
DeltaT = timercounter;

timercounter = 0;

RealDeltaT = DeltaT/freq;

// Write Commanded Reaction Wheel Angular Rate to Motor Controllers

Serial*.write(MotorDirl);

Seriall.write(MotorSpeedl);

Serial1.write(MotorDir2);

Serial1.write(MotorSpeed2);

Seriall.write(MotorDir3);
Seriall.write(MotorSpeed3);

Seriall.write(MotorDir4);

Seriall.write(MotorSpeed4);

// Read IMU

// read all variables from IMU

globe-read(globe.name);
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x-gyro.sign = UBLB14(x-gyro-b1,x-gyro-b2);
x-gyro = UBLB12(xgyro-b1,x-gyro-b2);

if (x...gyro...sign == 0) f
x-.gyro = x...gyro*gyro..gain;

I
else

x...gyro = (x-gyro-4096)*gyro-gain;

I

y..gyro-sign = UBLB14(ygyro.bl,y..gyrob2);
y...gyro = tBLB12(ygyrob1,y-gyro-b2);

if (y.gyro-sign == 0) fC
y...gyro = y-gyro*gyro-.gain;

I
else{

y-gyro = Cy-gyro-4096)*gyro-.gain;

I

z..gyro..sign = UBLB14(z-gyro.bl,z-.gyrob2);

z...gyro = UBLB12(zro-bI~zgyro-b2);

if (z..gyro...sign == 0) f
z..gyro = z-gyro*gyro-gain;

I
else{

z..gyro = Cz-gyro-4096)*gyro..gain;
I

x-acc-sign = UBLB14(x-acc.b1,x..acc-b2);
x-acc = UBLB12(x-acc-bi x-acc..b2);

if (x-acc-sign == 0) f

x-acc = x-acc*acc..gain;

I
else{

x-acc = (x-acc-4096)*acc-gain;

I

y-acc-sign = UBLB14(y-acc-b1,y-acc-b2);
y-acc = UBLB12(yaccb,y.acc.b2);

if (y-acc-sign == 0) f

y-acc = y-acc*acc-gain;

I
else{
y-acc = (y-acc-4096)*acc-gain;

I

z-acc-sign = UBLB14(z-acc-bi z-acc-b2);
z-acc = UBLB12(z-acc-bi z-acc-b2);
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if (z-accsign == 0) {
z-acc = z-acc*acc-gain;

}
else {
z-acc = (z-acc-4096)*acc-gain;

}

// Read Magnetometer

read-mago;

decodemag(x-data,xdata2);

x-mag = mag-val;

decode-mag (y-datal, y-data2);
y-mag = mag-val;

decode-mag(z-datal,zdata2);
z-mag = mag-val;

// Commanded Angular Orientation and Commanded Angular Rate

// commanded angular rate in radians per second

x_ComRate = 0;
yComRate = 0;

zComRate = 0;

if (timekeep >= 30)

{
x_ComRate = 0;
yComRate = 0;

z_ComRate = 0.007854*(timekeep-30);

}

if (timekeep >= 40)

{
x_ComRate = 0;

yComRate = 0;

z_ComRate = 0.07854;

}

if (timekeep >= 50)

{
x_ComRate = 0;

yComRate = 0;

z_ComRate = 0.07854-(0.007854*(timekeep-50));

}

if (timekeep >= 60)
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xComRate

yComRate
z_ComRate

if (timekeep >= 80)

x_ComRate = 0;
yComRate = 0.000873*(timekeep-80);
z_ComRate = 0;

if (timekeep >= 90)

f
x_ComRate = 0;
yComRate = 0.008730;
z_ComRate = 0;

}

if (timekeep >= 100)

f
x_ComRate = 0;
yComRate = 0.008730-(0.000873*(timekeep-100));
z_ComRate = 0;

}

if (timekeep >= 110)

{
x_ComRate = 0;
y_ComRate = 0;
z_ComRate = 0;

}

if (timekeep >= 130)

x
x_ComRate = 0;
yoRate = 0;
z_ComRate = -0.007854*(timekeep-130);

}

if (timekeep >= 140)

x
x_ComRate = 0;
y-oRate = 0;
z_ComRate = -0.07854;

}

if (timekeep >= 150)

{
x_ComRate = 0;
yComRate = 0;

z_ComRate = -0.07854+(0.007854*(timekeep-150));
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if (timekeep >= 160)

f
x_ComRate = 0;

yComRate = 0;

zComRate = 0;

}

if (timekeep >= 180)

x_Com.Rate = 0.000873*(timekeep-180);
yComRate = 0;

z_ComRate = 0;

}

if (timekeep >= 190)

f
x_ComRate = 0.008730;
y_ComRate = 0;

z_ComRate = 0;

}

if (timekeep >= 200)

{
xComRate = 0.008730-(0.000873*(timekeep-200));
yComRate = 0;

z_ComRate = 0;

}

if (timekeep >= 210)

x
xComRate = 0;

yComRate = 0;
zCornRate = 0;

}

// commanded angular orientation in radians

x_ComPos = xComPosPrev + xComrRate*RealDeltaT;

yComPos = yComPosPrev + yComRate*RealDeltaT;
z_ComPos = zComPosPrev + zComRate*RealDeltaT;

x_ComPosPrev = xComPos;

yComPosPrev = yComPos;
z_ComPosPrev = zComPos;

// Extended Kalman Filter

// measured angular rate from IMU in radians per second

x-gyro = (x-gyro-0.0486)*RAD;
y.gyro = (y-gyro+0.1246)*RAD;
z-gyro = (z-gyro-0.1312)*RAD;
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x_MeasRate = -x-gyro;
yMeasRate = -ygyro;
z_MeasRate = z-gyro;

// measured ang orientation from integrated IMU ang rate meas in rad
xMeasPos = xMeasPosPrev+xMeasRate*RealDeltaT;
yMeasPos = yMeasPosPrev+yMeasRate*RealDeltaT;
zMeasPos = zMeasPosPrev+zMeasRate*RealDeltaT;

x_MeasPosPrev = x-MeasPos;
yMeasPosPrev = yMeasPos;
z_MeasPosPrev = zMeasPos;

// measured linear acceleration (gravity vector) from IMU in g's
x_acc = -x.acc;
y-acc = -y-acc;

z_acc = z-acc;

// measured magnetic field

if (x-mag >= 0) {xMag =

else {xMag =
if (y-mag >= 0) {yMag =

else {yMag =
zMag = -z-mag-zbias;

vector from magnetometer in counts
x-pos-gain*x-mag;}
x-neg-gain*x-mag;}
-y-neg-gain*y-mag;}
-y-pos-gain*y-mag;}

// reaction wheel state space model
Wxest = 0.9775*WxestPrev+0.0211*ixestPrev+0.3003*RW1_Volt;
Wy-est = 0.9775*Wy-estPrev+0.0211*iyestPrev+0.3003*RW2_Volt;
Wzest = 0.9775*WzestPrev+0.0211*izestPrev+0.3003*RW3_Volt;

ixest
iy-est
izest

-0.0457*WxestPrev-0.001*ixestPrev+0.6445*RW1_Volt;

-0.0457*Wy-estPrev-0.001*iy-estPrev+0.6445*RW2_Volt;

-0.0457*WzestPrev-0.001*izestPrev+0.6445*RW3_Volt;

Wxdotest =
Wy-dot-est =
Wzdot.est =

WxestPrev =
Wy-estPrev =
WzestPrev =

(Wx-est-WxestPrev)/RealDeltaT;

(Wy-est-Wy-estPrev)/RealDeltaT;

(Wz-est-WzestPrev)/RealDeltaT;

Wx-est;

Wyest;

Wz_est;

ixestPrev = ix-est;
iy-estPrev = iy-est;
iz-estPrev = iz-est;

// air bearing state propagation
tx.n = Ad_11*tx-pPrev +Ad_12*ty-p_Prev +Ad_13*tz-pPrev+Ad_14*wx-pPrev

+Ad_15*wy-pPrev+Ad_16*wz-pPrev

+Bd_11*Wxdotest+Bd_12*Wy-dot-est+Bd_13*Wzdotest;

ty-n = Ad_21*tx-pPrev +Ad_22*ty-p_Prev +Ad_23*tz-pPrev+Ad_24*wx-pPrev
+Ad_25*wy-pPrev+Ad_26*wz-pPrev

+Bd_21*Wxdotest+Bd_22*Wy-dot-est+Bd_23*Wzdotest;
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tzn = Ad_31*tx-p_Prev +Ad_32*ty-pPrev +Ad_33*tz-pPrev+Ad_34*wx-pPrev
+Ad_35*wy-pPrev+Ad_36*wz-pPrev
+Bd_31*Wxdot-est+Bd_32*Wy.dot-est+Bd_33*Wzdotest;

wxn = Ad_41*tx-p_Prev +Ad_42*ty-pPrev +Ad_43*tz-pPrev+Ad_44*wx-pPrev

+Ad_45*wy-pPrev+Ad_46*wz-pPrev
+Bd_41*Wxdotest+Bd_42*Wy-dot-est+Bd_43*Wzdotest;

wy-n = Ad_51*txp_Prev +Ad_52*ty-pPrev +Ad_53*tz-pPrev+Ad_54*wx-pPrev
+Ad_55*wy-pPrev+Ad_56*wz-pPrev

+Bd_51*Wxdot-est+Bd_52*Wy-dot-est+Bd_53*Wzdotest;

wzn = Ad_61*tx-p_Prev +Ad_62*ty-pPrev +Ad_63*tz-pPrev+Ad_64*wx-pPrev
+Ad_65*wy-pPrev+Ad_66*wz-pPrev

+Bd_61*Wxdotest+Bd_62*Wy-dot-est+Bd_63*Wzdotest;

// DCM from reference frame to commanded air bearing angular orientation

Delta-x-pos = xComRate*RealDeltaT;
Delta-y-pos = yComRate*RealDeltaT;
Deltaz.pos = zComRate*RealDeltaT;

skew(Delta-x-pos,Delta-yppos,Delta-z.pos);

Delta_11 = -Sl; Delta_12 = -S12; Delta_13 = -S13;

Delta_21 = -S21; Delta_22 = -S22; Delta_23 = -S23;

Delta_31 = -S31; Delta_32 = -S32; Delta_33 = -S33;

expm(Deltall,Delta_12,Delta_13,Delta_21,Delta_22,Delta_23,Delta_31,
Delta_32,Delta_33);

d_DCM_11 = outl1; dDCM_12 = outl2; dDCM_13 = outl3;

d_DCM_21 = out2l; dDCM_22 = out22; dDCM_23 = out23;

d_DCM_31 = out3l; dDCM_32 = out32; dDCM_33 = out33;

matmult(dDCM_11,d_DCM_12,d_DCM_13,d_DCM_21,d_DCM_22,dDCM_23,d_DCM_31,
d_DCM_32,dDCM_33,DCM_11_Prev,DCM_12_Prev,DCM_13_Prev,DCM_21_Prev,

DCM_22_Prev,DCM_23_Prev,DCM_31_Prev,DCM_32_Prev,DCM_33_Prev);

DCM_11 = c1l; DCM_12 = c12; DCM_13 = c13;

DCM_21 = c21; DCM_22 = c22; DCM_23 = c23;

DCM_31 = c31; DCM_32 = c32; DCM_33 = c33;

DCM_11_Prev = DCM_11; DCM_12_Prev = DCM_12; DCM_13_Prev = DCM_13;

DCM_21_Prev = DCM_21; DCM_22_Prev = DCM_22; DCM_23_Prev = DCM_23;

DCM_31_Prev = DCM_31; DCM_32_Prev = DCM_32; DCM_33_Prev = DCM_33;

// innovation from rate measurement;

x-pos-innov = xMeasPos-tx-n;
y-pos-innov = yMeasPos-ty-n;

z-pos-innov = zMeasPos-tzn;

x_rateinnov = xMeasRate-wxn;

y-rate-innov = yMeasRate-wy-n;
z_rateinnov = zMeasRate-wzn;

// innovation from gravity vector measurement

x-grav = DCM_13*-1;
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ygrav = DCM_23*-i;
z-grav = DCM_33*-1;

cross(x-acc,y-acc,z-acc,x-grav,y-grav,z-grav);

xgrav-pos =
y-grav-pos =
z-grav-pos =

x.grav-innov
y.gravinnov
z-grav_innov

x_ComPos+g1;
yComPos+g2;
zComPos+g3;

= x-grav-pos-tx_n;
= y-grav-pos-ty-n;
= z.grav-pos-tz_n;

// innovation from magnetic field vector measurement
x-mag-cmd = DCM_11*x-magref+DCM_12*y-mag-ref+DCM_13*z-mag-ref;
y-mag-cmd = DCM_21*x-magref+DCM_22*y-mag-ref+DCM_23*z-mag-ref;
z-mag-cmd = DCM_31*x-magref+DCM_32*y-mag-ref+DCM_33*z-mag-ref;

mag(x-mag-cmd,y.mag-cmd, zmag.cmd);
norm-mag-cmd = norm;

mag(xMag,yMag,zMag);
normMag = norm;

cross(xMag,yMag,zMag,x.magcmd,y-mag-cmd,z-mag_cmd);

xmag-pos =
y-mag-pos =
z-mag-pos =

x.maginnov
y-mag-innov
z-mag.innov

x_ComPos+(gi/(norm-mag-cmd*normMag));

yComPos+(g2/(norm.mag-cmd*normMag));
z_ComPos+(g3/(norm-mag-cmd*normMag));

= x-mag-pos-tx_n;

= y-mag-pos-ty-n;

= z-mag-pos-tz_n;

// air bearing state update;
txp = txn +

+

+

+

ty-p = ty-n +
+

+

+

tz.p = tz-n +
+

+

+

wx-p = wxn +
+

+

+

wyp = wyn +

L11*x-pos-innov

L14*x-rateinnov
L17*x-gravinnov
L110*x-mag-innov
L21*x-pos-innov
L24*x-rate-innov
L27*x-gravinnov
L210*x-maginnov
L31*x-pos-innov
L34*x-rateinnov
L37*x-gravinnov
L310*x-mag-innov
L41*x-pos-innov
L44*x-rate-innov
L47*x-grav-innov
L410*x-mag-innov
L51*x-pos-innov
L54*xrate-innov
L57*x-grav-innov

+ L12*yposinnov
+ L15*y-rate-innov
+ L18*y-grav-innov
+ L111*y-maginnov
+ L22*y-posinnov
+ L25*y-rate-innov
+ L28*y.gravinnov
+ L211*y-maginnov
+ L32*y-pos-innov
+ L35*y-rateinnov
+ L38*y-gravinnov
+ L311*y-maginnov
+ L42*y-pos-innov
+ L45*y-rateinnov
+ L48*y-grav-innov
+ L411*y-mag-innov
+ L52*y-pos-innov
+ L55*y-rate-innov
+ L58*y-grav-innov

L13*z-posinnov
L16*zrateinnov
L19*z-gravinnov
L112*zmag-innov;
L23*z-posinnov
L26*zrate-innov
L29*zgrav_innov
L212*zmag-innov;
L33*z-pos-innov
L36*zrate-innov
L39*zgravinnov
L312*zmag-innov;
L43*z-posinnov
L46*zrate-innov
L49*z-grav-innov
L412*zmag-innov;

L53*z-pos-innov
L56*zrate-innov
L59*z-grav-innov
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wz-p = wz_n
+ L510*x-mag-innov
+ L61*x-pos-innov
+ L64*xrateinnov
+ L67*x-grav-innov
+ L610*x-mag-innov

L511*y-mag-innov
L62*y-pos-innov
L65*y-rate-innov
L68*y-grav.innov
L611*y-mag-innov

L512*zmag-innov;
L63*z-pos-innov
L66*z-rate-innov

L69*z-grav-innov

L612*zmag-innov;

wx-dot-p = (wxp-wx-pPrev)/RealDeltaT;

wy-dot-p = (wy-p-wy-pPrev)/RealDeltaT;
wz-dot-p = (wz-p-wz-pPrev)/RealDeltaT;

tx-pPrev=tx-p; ty-pPrev=ty-p; tz-pPrev-tz-p;

wx-pPrev=wx-p; wy-pPrev=wyp; wz-pPrev=wz-p;

// Control Law

// error
x_ErrPos
yErrPos

z_ErrPos

in angular orientation

= x_ComPos-txp;
= yComPos-typ;

= z_ComPos-tz-p;

// error in angular rate

x_ErrRate = xComRate-wx-p;
yErrRate = yComRate-wy-p;
z_ErrRate = zComRate-wz.p;

// error in angular acceleration

x_ErrAcc = 0-wx-dot-p;
yErrAcc = 0-wy-dot-p;

z_ErrAcc = 0-wzdot-p;

// commanded reaction wheel angular acceleration

Wxdotcmdlqr = K11*xErrPos + K12*yErrPos + K13*zErrPos
+ K14*xErrRate + K15*yErrRate + K16*z-ErrRate;

Wy-dot-cmd-lqr = K21*xErrPos + K22*yErrPos + K23*zErrPos
+ K24*xErrRate + K25*yErrRate + K26*zErrRate;

Wzdotcmdlqr = K31*xErrPos + K32*yErrPos + K33*zErrPos
+ K34*xErrRate + K35*yErrRate + K36*zErrRate;

// derivative control for rate damping

wxdotcmdrd = derivgain*xErrAcc;
wy-dot-cmdrd = deriv-gain*yErrAcc;
wzdotcmdrd = deriv-gain*zErrAcc;

Wxdotcmd-rd = -(Ixx*D11*wx-dotcmd-rd+Iyy*D21*wy-dotcmdrd
+Izz*D31*wz-dot-cmd-rd)/Ia;

Wy-dot-cmd-rd = -(Ixx*D12*wxdotcmd-rd+Iyy*D22*wy-dotcmdrd
+Izz*D32*wzdotcmd-rd)/Ia;

Wzdotcmd-rd = -(Ixx*D13*wxdotcmd-rd+Iyy*D23*wy-dotcmdrd
+Izz*D33*wzdotcmd-rd)/Ia;

// commanded reaction wheel acceleration from control law

Wxdotcmdcl = Wxdotcmd-lqr+Wx-dot_cmd_rd;
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Wy-dotcmd_cl = Wy-dot-cmd-lqr+Wy-dotcmdrd;
Wzdotcmd_cl = Wzdotcmdlqr+Wz-dotcmdrd;

// commanded reaction wheel rate from control law
Wxcmd_cl = Wxcmd_clPrev + Wx-dotcmdcl*RealDeltaT;
Wy-cmd-cl = Wycmd_clPrev + Wy-dot-cmd-cl*RealDeltaT;
Wz-cmd_cl = Wzcmd-clPrev + Wzdotcmd_cl*RealDeltaT;

Wxcmd_clPrev = Wxcmd_cl;
Wy-cmd-clPrev = Wy-cmd-cl;
Wzcmd_clPrev = Wzcmd-cl;

// feedforward of dynamics due to angular momentum vector

x_ComAcc = (xComRate-xComRatePrev)/RealDeltaT;
yComAcc = (yComRate-yComRatePrev)/RealDeltaT;
z_ComAcc = (zComRate-zComRatePrev)/RealDeltaT;

x_ComRatePrev = xComRate;

yComRatePrev = yComRate;
zComRatePrev = zComRate;

// commanded reaction wheel acceleration from feed forward algorithm
Wxdot_cmd_ff = D11*(zComRate*(D21*Wx-cmdffPrev+D22*Wy-cmdffPrev

+D23*WzcmdffPrev)-yComRate*(D31*Wx-cmd-ffPrev+D32*Wyacmd_ffPrev

+D33*Wzcmd_ff _Prev)+(Iyy*yComRate*zComRate-Izz*yComRate*zComRate

-Ixx*xComAcc)/Ia)+D21*(xComRate*(D31*Wx-cmd_ff_Prev+D32*Wy-cmd-ff_Prev
+D33*WzcmdffPrev)-zComRate*(D11*Wx-cmdffPrev+D12*Wy-cmd-ffPrev

+D13*Wzcmd_ffPrev)+(Izz*xComRate*zComRate-Ixx*xComRate*zComRate

-Iyy*yComAcc)/Ia)+D31*(yComRate*(D11*Wxcmd_ff_Prev+D12*Wy-cmdjff_Prev
+D13*Wz_cmd_ffPrev)-xComRate*(D21*Wx-cmdffPrev+D22*Wy-cmd_ffPrev

+D23*Wzcmd_ffPrev)+(Ixx*xComRate*yComRate-Iyy*xComRate*yComRate

-Izz*zComAcc)/Ia);

Wy-dotcmdff = D12*(zComRate*(D21*Wx-cmd-ffPrev+D22*Wy-cmd_ffPrev
+D23*Wzcmd_ffPrev)-yComRate*(D31*Wx-cmd-ffPrev+D32*Wyacmd_ffPrev

+D33*Wzcmd_ffPrev)+(Iyy*yComRate*zComRate-Izz*yComRate*zComRate

-Ixx*xComAcc)/Ia)+D22*(xComRate*(D31*Wx-cmdffPrev+D32*Wy-cmdjff_Prev

+D33*WzcmdffPrev)-zComRate*(D11*Wx-cmd-ffPrev+D12*Wycmd-ffPrev

+D13*Wz_ cmd-ffPrev)+(Izz*xComRate*zComRate-Ixx*xComRate*zComRate

-Iyy*yComAcc)/Ia)+D32* (yComRate*(D11*Wxcmd_ff_Prev+D12*Wy-cmd-ff_Prev
+D13*Wzcmd_ffPrev)-xComRate*(D21*Wx-cmd-ffPrev+D22*Wycmd_ffPrev
+D23*Wzcmd_ffPrev)+(Ixx*xComRate*yComRate-Iyy*xComRate*yComRate
-Izz*zComAcc)/Ia);

Wzdotcmdff = D13*(zComRate*(D21*Wx-cmdffPrev+D22*Wy-cmdffPrev
+D23*Wz-cmd-ffPrev)-yComRate*(D31*Wxcmd-ffPrev+D32*Wycmd_ffPrev

+D33*Wzcmd_ffPrev)+(Iyy*yComRate*zComRate-Izz*yComRate*zComRate

-Ixx*xComAcc)/Ia)+D23*(xComRate*(D31*WxcmdffPrev+D32*Wy-cmd-ffPrev

+D33*WzcmdffPrev)-zComRate*(D11*Wx-cmd-ffPrev+D12*Wy-cmd-ffPrev

+D13*Wzcmd_ffPrev)+(Izz*xComRate*zComRate-Ixx*xComRate*zComRate

-Iyy*yComAcc)/Ia)+D33*(yComRate*(D11*Wx_cmd ffPrev+D12*Wy-cmd-ff_Prev
+D13*WzcmdffPrev)-xComRate*(D21*Wx-cmd-ffPrev+D22*Wycmd-ffPrev

+D23*Wz_cmd_ffPrev)+(Ixx*xComRate*y_ComRate-Iyy*xComRate*yComRate

-Izz*zComAcc)/Ia);
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// commanded reaction wheel rate from feed forward algorithm

Wxcmdff = Wx-cmdffPrev + Wxdotcmdff*RealDeltaT;
Wy-cmd-ff = Wy-cmd-ffPrev + Wy-dot-cmdff*RealDeltaT;
Wzcmdff = Wz-cmdffPrev + Wz-dotcmdff*RealDeltaT;

WxcmdffPrev = Wxcmdff;
Wy-cmd-ffPrev = Wy-cmd-ff;
WzcmdffPrev = Wzcmdff;

// combined commanded reaction wheel rate from control law

// and feed forward algorithm

Wxcmd = Wxcmdcl+Wx-cmd-ff;
Wy-cmd = Wy-cmd-cl+Wy-cmd-ff;
Wzcmd = Wzcmd_cl+Wzcmd-ff;

// Determine Reaction Wheel Angular Rate from Motor Encoders

EncoderRW1 = encodelbl;
EncoderRW1 =
EncoderRW1 =

EncoderRW1 =

EncoderRW2 =
EncoderRW2 =
EncoderRW2 =
EncoderRW2 =

EncoderRW3 =
EncoderRW3 =
EncoderRW3 =
EncoderRW3 =

EncoderRW4 =
EncoderRW4 =
EncoderRW4 =
EncoderRW4 =

(EncoderRW1

(EncoderRW1
(EncoderRW1

encode2_bl;

(EncoderRW2

(EncoderRW2

(EncoderRW2

encode3_bl;
(EncoderRW3
(EncoderRW3
(EncoderRW3

encode4_bl;

(EncoderRW4

(EncoderRW4
(EncoderRW4

encodelb2;

encodelb3;

encodelb4;

encode2_b2;

encode2_b3;

encode2_b4;

encode3_b2;

encode3_b3;

encode3_b4;

encode4_b2;

encode4_b3;

encode4_b4;

RPM1 = ((EncoderRW1-EncoderRW1_prev)/1000.0)/RealDeltaT*60.0;
RPM2 = ((EncoderRW2-EncoderRW2_prev)/1000.0)/RealDeltaT*60.0;

RPM3 = ((EncoderRW3-EncoderRW3_prev)/1000.0)/RealDeltaT*60.0;

RPM4 = ((EncoderRW4-EncoderRW4_prev)/1000.0)/RealDeltaT*60.0;

EncoderRW1_prev = EncoderRW1;

EncoderRW2_prev = EncoderRW2;

EncoderRW3_prev = EncoderRW3;

EncoderRW4_prev = Encoder_RW4;

RPS1 = RPM1*6.2832/60;
RPS2 = RPM2*6.2832/60;
RPS3 = RPM3*6.2832/60;
RPS4 = RPM4*6.2832/60;
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// Reaction Wheel Motor Controller

// limit commanded reaction wheel angular rate
RW1_ComSpeed = constrain(Wx-cmd, -194, 194);
RW2_ComSpeed = constrain(Wy-cmd, -194, 194);
RW3_ComSpeed = constrain(Wz-cmd, -194, 194);

// convert from radians per second to motor controller voltage
RW1_Volt = RW1_ComSpeed/13.379;
RW2_Volt = RW2_ComSpeed/13.379;
RW3_Volt = RW3_ComSpeed/13.379;

// absolute value of commanded reaction wheel angular rate
RW1_ComSpeed-abs = abs(RW1_ComSpeed);
RW2_ComSpeed-abs = abs (RW2_ComSpeed);
RW3_ComSpeed-abs = abs(RW3_ComSpeed);

// convert from radians per second to motor controller byte representation
ComSpeed1 = map(RW1_ComSpeed-abs, 0, 194, 0, 127);
ComSpeed2 = map(RW2_ComSpeed-abs, 0, 194, 0, 127);
ComSpeed3 = map(RW3_ComSpeed-abs, 0, 194, 0, 127);

// determine reaction wheel direction command for motor controller
if (RW1_ComSpeed >=0)

f
ComDirl = OxC2;

}
else

f
ComDirl = OxC1;

}

if (RW2_ComSpeed >=0)

{
ComDir2 = OxCA;

}
else

f
ComDir2 = OxC9;

}

if (RW3_ComSpeed >=O)

ComDir3 = OxC2;

}
else

f
ComDir3 = OxC1;

}

// brake speed algorithm for motor controller
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ThresSpeed1 =
ThresSpeed2 =
ThresSpeed3 =

1.05*RW1_ComSpeed-abs;
1.05*RW2_ComSpeed-abs;

1.05*RW3_ComSpeed-abs;

if (timekeep < 0.5)

ThresSpeed1

ThresSpeed2

ThresSpeed3

500000;

500000;

500000;

if (RPS1 > ThresSpeed1)
{
MotorDiri = OxCO;

MotorSpeed1 = 127;

RW1_Volt = 0;

else

MotorDir1 = ComDirl;

MotorSpeed1 = ComSpeed1;

}

if (RPS2 > ThresSpeed2)
{
MotorDir2 = OxC8;

MotorSpeed2 = 127;

RW2_Volt = 0;

else

MotorDir2 = ComDir2;
MotorSpeed2 = ComSpeed2;

}

if (RPS3 > ThresSpeed3)
{

MotorDir3 = OxCO;

MotorSpeed3 = 127;

RW3_Volt = 0;

}
else

{
MotorDir3 = ComDir3;
MotorSpeed3 = ComSpeed3;

// Print Results

if (timekeep-flag == 1) {serial.out(timekeep,

timekeep-post);}

if (RealDeltaT-flag == 1) {serial-out(RealDeltaT*1000,
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if (DeltaT-flag == 1)

if (RW1_ComSpeed-flag == 1)

if (RPS1_f lag == 1)

if (RW1_Volt-flag == 1)

if (RW2_ComSpeed-flag == 1)

if (RPS2_flag == 1)

if (RW2_Voltflag == 1)

if (RW3_ComSpeed-flag == 1)

if (RPS3_flag == 1)

if (RW3_Voltflag == 1)

if (xComPos-flag == 1)

if (yComPos-flag == 1)

if (zComPosflag == 1)

if (xComRate-flag = 1)

if (yComRate-flag == 1)

if (zComRate-flag == 1)

if (tx.p.f lag == 1)

if (typ-f lag == 1)

if (tz.p-flag == 1)

if (wx-pjflag == 1)

if (wy.p.f lag == 1)

if (wz.pjflag == 1)

if (wx-dot-p-flag == 1)

if (wy-dotp-flag == 1)

if (wz-dot-p-flag == 1)

if (RPS4_flag == 1)

if (x-gyro.flag == 1)

RealDeltaT-post);}

{serial-out(DeltaT,
DeltaT-post);}

{serial-out (RW1_ComSpeed,
RW1_ComSpeedpost);}

{serial-out(RPS1,
RPS1_post);}
{serial-out(RW1_Voltflag,

RW1_Volt-post);}
{serial-out(RW2_ComSpeed,

RW2_ComSpeed-post);}

{serial-out(RPS2,

RPS2_post);}
{serial.out(RW2-Voltflag,

RW2_Volt-post);}

{serialout(RW3_ComSpeed,

RW3_ComSpeed-post);}

{serial-out(RPS3,

RPS3_post);}
{serial-out(RW3_Voltflag,

RW3_Volt.post);}
{serial-out(xComPos*DEG,

x_ComPos.post);}
{serial-out(y_ComPos*DEG,

yComPos-post);}
{serial-out(zComPos*DEG,

z_ComPos-post);}

{serial-out (xComRate*DEG,
x_ComRate-post);}
{serial-out(yComRate*DEG,

yComRate-post);}
{serial-out(zComRate*DEG,

z_ComRatepost);}

{serial-out(tx-p*DEG,
tx.p-post);}

{serial-out (ty-p*DEG,
ty-p.post);}

{serial-out (tz-p*DEG,
tz-p-post);}

{serial-out(wx-p*DEG,
wx-p.post);}

{serial-out(wy-p*DEG,
wy.ppost);}

{serial-out(wz-p*DEG,
wzp.post);}

{serial-out(wx-dot-p*DEG,
wxdot-p-post);}

{serial-out (wydot-p*DEG,

wy-dot-p-post);}
{serial-out(wz-dot-p*DEG,
wzdot-p-post);}

{serial-out(RPS4,

RPS4_post);}
{serial-out(x-gyro*DEG,
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if (y-gyro-flag == 1)

if (zgyro-flag == 1)

if (xMeasPos-flag == 1)

if (yMeasPos-flag == 1)

if (zMeasPos-flag == 1)

if (xMeasRate-flag == 1)

if (yMeasRate-flag == 1)

if (zMeasRate-flag == 1)

if (x-acc-flag == 1)

if (y-acc-flag == 1)

if (z-accf lag == 1)

if (x-mag-flag == 1)

if (y-mag-flag == 1)

if (z-mag-flag == 1)

if (xMag-flag == 1)

if (yMag-flag == 1)

if (zMag-flag == 1)

if (Wx-est-flag = 1)

if (Wy-est-flag == 1)

if (Wz-est-flag == 1)

if (x-gravflag == 1)

if (y-gravf lag = 1)

if (z-grav-flag == 1)

if (x-grav-pos-flag == 1)

if (y-grav-posflag == 1)

if (z-grav-pos-flag == 1)

if (x-mag-cmd-flag == 1)

x.gyropost);}
{serial-out(y-gyro*DEG,

y-gyro-post);}

{serial-out(z-gyro*DEG,
z-gyro-post);}

{serial-out(xMeasPos*DEG,

x_MeasPos-post);}
{serial-out(yMeasPos*DEG,

yMeasPos-post);}

{serial_out(z_MeasPos*DEG,

zMeasPos-post);}

{serialout (xMeasRate*DEG,

xMeasRate-post);}

{serial_out (y_MeasRate*DEG,
yMeasRate-post);}

{serial-out(zMeasRate*DEG,

zMeasRate-post);}
{serial-out(xacc,
x_accpost);}

{serial-out(yacc,
y-acc-post);}

{serial-out(z-acc,
z_accpost);}
{serial_out(xjmag,

xmag-post);}

{serial-out(yjmag,

y-mag.post);}
{serial-out (zjmag,
z-magpost);}

{serial-out(xMag,
xMag-post);}

{serial_out(y_Mag,
yMag-post);}

{serial_out(z_Mag,
zMag-post);}

{serial-out(Wxest,

Wxest-post);}
{serialout(Wy-est,
Wy-est-post);}

{serialout(Wzest,
Wzest-post);}

{serialout(xgrav,
x-grav-post);}
{serial-out(y-grav,
y-grav-post);}

{serial-out(zgrav,

z-grav-post);}

{serialout(xgrav-pos*DEG,

x-grav-pos-post);}

{serial-out(y-grav-pos*DEG,
y-grav-pos-post);}

{serialout(z-grav-pos*DEG,

z-grav-pos-post);}

{serialout(x.mag-cmd,

249



if (y-mag-cmd-flag == 1)

if (z-mag-cmd-flag == 1)

if (x-mag-pos-flag == 1)

if (y-mag-pos-flag == 1)

if (z-mag-pos-flag == 1)

x-mag-cmd-post);}
{serial-out(y-magccmd,

y-mag-cmd-post);}

{serial.out(z-mag-cmd,

zmag.cmd-post);}

{serial-out(xmag-pos*DEG,

x-magpos-post);}
{serial.out(y-mag-pos*DEG,

y-mag.pos.post);}
{serial-out(z-mag-pos*DEG,

z-mag-pos-post);}

// Read Encoder Information from Auxiliary Arduino

if (Seriall.available() > 15);

{
encodel_b1
encodelb2
encode1_b3
encodelb4

encode2_b1
encode2_b2
encode2_b3
encode2_b4

encode3_b1
encode3_b2
encode3_b3
encode3_b4

Seriall.reado;

Seriall.reado;

Seriall.reado;

Seriall.reado;

Seriall.reado;
Seriall.reado;

Seriall.reado;

Seriall.read();

Seriall.read(;

Seriall.reado);

Seriall.reado;

Seriall.reado;

encode4_b1 = Seriall.reado);
encode4_b2 = Seriall.reado;
encode4_b3 = Seriall.read(;
encode4_b4 = Seriall.reado);

}

Seriall.flush();

digitalWrite(progPin, LOW);

}
}

void timer2()

{
timercounter = timercounter+1;
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C.5 Provided mega-aux.pde Code

This code can be copied directly into the Arduino's IDE, named "mega-aux.pde and up-
loaded to the Auxiliary Arduino.

// Initialize Required Variables and Interrupt Pins

const int DigitalIn2 = 2;
const int DigitalIn3 = 3;
const int DigitalIn2O = 20;

const int DigitalIn2l = 21;

int progPin = 43;
long EncoderCounter2 = 0;
long EncoderCounter3 = 0;
long EncoderCounter20 = 0;
long EncoderCounter2l = 0;
byte encode2_bl = 0;

byte encode2_b2 = 0;
byte encode2_b3 = 0;
byte encode2_b4 = 0;
byte encode3_bl = 0;

byte encode3_b2 = 0;
byte encode3_b3 = 0;

byte encode3_b4 = 0;

byte encode20_bl = 0;
byte encode20_b2 = 0;
byte encode20_b3 = 0;
byte encode20_b4 = 0;
byte encode2lbl = 0;
byte encode21_b2 = 0;
byte encode21_b3 = 0;
byte encode21_b4 = 0;
byte byte1rwl = 0;
byte byte2_rwl = 0;
byte bytelrw2 = 0;
byte byte2_rw2 = 0;

byte bytelrw3 = 0;
byte byte2_rw3 = 0;

byte bytelrw4 = 0;

byte byte2_rw4 = 0;

byte clr = 0;

// Initialize Auxiliary Loop

void setup()

{
Serial.begin(57600); // port between aux arduino and GS computer

Seriall.begin(115200); // port between aux and main arduino

Serial2.begin(19200); // port between arduino and MC for RW1 and RW2

Serial3.begin(19200); // port between arduino and MC for RW3 and RW4
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pinMode(progPin, OUTPUT);

attachInterrupt(0, encoder2, RISING);
attachInterrupt(1, encoder3, RISING);
attachInterrupt(3, encoder20, RISING);
attachInterrupt(2, encoder2l, RISING);

interrupts();

}

// Begin Auxiliary Loop

void loopo)

if (Seriall.available() > 7)
{
digitalWrite(progPin, HIGH);

// Write Motor Encoder Values to Main Arduino

noInterrupts();

encode2_bl = (EncoderCounter2&OxFFOOOOOO) >> 24;
encode2_b2 = (EncoderCounter2&OxOOFFOOOO) >> 16;
encode2_b3 = (EncoderCounter2&0x000OFF00) >> 8;
encode2_b4 = EncoderCounter2&OxOOOOOOFF;

encode3_bl = (EncoderCounter3&xFFOOOOOO)
encode3_b2 = (EncoderCounter3&OxOOFFOOOO)
encode3_b3 = (EncoderCounter3&OxOOOOFFOO)
encode3_b4 = EncoderCounter3&0x000000FF;

24;
16;
8;

encode20_b1 =
encode20_b2 =
encode20_b3 =
encode20_b4 =

encode2l_b1 =
encode21_b2 =
encode21_b3 =
encode2lb4 =
interrupts();

(EncoderCounter20&xFFOOOOOO)
(EncoderCounter20&Ox00FFOOOO)
(EncoderCounter20&xOOOOFFOO)
EncoderCounter20&OxOOOOOOFF;

>> 24;
>> 16;

>> 8;

(EncoderCounter21&0xFF000000) >> 24;
(EncoderCounter21&0x00FF0000) >> 16;
(EncoderCounter21&0x0000FF00) >> 8;
EncoderCounter21&Ox00000FF;

Serial1.write(encode2_bl);
Serial1.write(encode2_b2);
Serial1.write(encode2_b3);
Serial1.write(encode2_b4);

Serial1.write(encode3_bl);
Serial1.write(encode3_b2);
Serial1.write(encode3_b3);
Serial1.write(encode3_b4);
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Seriall.write(encode20_bl);
Seriall.write(encode20_b2);
Seriall.write(encode20_b3);
Seriall.write(encode20_b4);

Serial1.write(encode2lb1);
Seriall.write(encode21_b2);
Serial1.write(encode2lb3);
Seriall.write(encode21_b4);

// Read Reaction Wheel Commands From Main Arduino

bytelrw = Seriall.reado;

byte1rw1 = Seriall.reado);

bytelrw2 = Seriali.reado;
byte2rw2 = Seriall.reado;

byte2_rw3 = Seriall.reado;
byte2_rw3 = Seriall.reado;

byte1rw4 = Seriall.reado;
byte2_rw4 = Seriall.reado;

// Write Reaction Wheel Commands to Motor Controllers

Serial2.write(bytelrw1);
Serial2.write(byte2_rw1);

Serial2. write (byte1_rw2);
Serial2.write(byte2_rw2);

Serial3.write(byte1_rw3);
Serial3.write(byte2_rw3);

Serial3.write(byte1_rw4);
Serial3.write(byte2_rw4);

Serial.flusho;
Seriali.flusho;
Serial2.flusho;

Serial3.flusho;

byte1_rw1 = clr;

byte2_rwl = clr;

byte1_rw2 = clr;

byte2_rw2 = clr;

byte1_rw3 = clr;

byte2_rw3 = clr;
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byte1rw4 = clr;

byte2_rw4 = clr;

digitalWrite(progPin, LOW);

}
}

// Define Motor Encoder Interrupt Functions

// hardware interrupt function, captures encoder signal from RW1
void encoder2()

EncoderCounter2 = EncoderCounter2 + 1;
}

// hardware interrupt function, captures encoder signal from RW2
void encoder3()

{
EncoderCounter3 = EncoderCounter3 + 1;

}

// hardware interrupt function, captures encoder signal from RW3
void encoder20()

{
EncoderCounter20 = EncoderCounter20 + 1;

}

// hardware interrupt function, captures encoder signal from RW4
void encoder21()

{
EncoderCounter2l = EncoderCounter2l + 1;

}
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C.6 Provided test-init.m MATLAB Script

This code can be copied directly into a blank MATLAB Script file, named "test-init.m"
and used to provide initial conditions to the ADCS testbed simulation and create the init.h
file necessary to provide initial conditions to the Arduino code for use on the physical air
bearing.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

% testinit.m

% Purpose: Initialize constants for ADCS Simulink Simulation and create

X init.h code file for Main Arduino on ADCS Testbed

% Clear workspace, clear command window, close figures
% clear all
X close all
% clc

XX Initial Conditions for Simulation and Physical Testbed

% Set time step
% timestep divided by 4096 equals delta T in seconds
X 205/4096 = 0.05 seconds
timestep = 205;

% timestep in seconds, must correspond to timestep from above
dtrw = 0.05;

X Set initial reaction wheel angular velocity in radians per second
RW1_init = 0;

RW2_init = 0;

RW3_init = 0;

% Set initial air bearing angular orientation in radians

x_posinit = 0;

y-pos-init = 0;
z_posinit = 0;

% Set initial air bearing angular velocity in radians per second
x_rate_init = 0;

y_rate_init = 0;

z_rate_init = 0;

% Air Bearing inertia tensor
Ixx = 4.0774;

Iyy = 4.1360;

Izz = 2.3216;

Iab = [Ixx 0 0;

0 Iyy 0;
0 0 Izz];
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% Reaction wheel inertia tensor
Ia = 0.00725;

Irw = [Ia 0 0;
0 Ia 0;
0 0 Ia];

% DCM from reaction wheel frame to body frame
DCMBODY_wrtRW = [ 0.408248 0.408248 -0.816496;

-0.7071 0.7071 0;
0.5774 0.5774 0.5774];

% Linearized State Space Model of Air Bearing
[Adab Bdab] = linear-eq(Ixx,Iyy,Izz,Ia,timestep/4096);

%% Initial Conditions unique to Arduino Code

% Initial direction cosine matrix
DCMinit = expm(-skew([x-posinit;y-pos-init;z-posinit]));

%% Initial Conditions unique to Simulation

X Set high frequency time step to simulate continous environment
dt = 0.005;

% Magnetic field in reference frame for simulation
mag-ref = [0;1400;0];

% State Space Model for Reaction Wheels
A_rw = [-0.0246 0 0 9.6552 0 0;

0 -0.0246 0 0 9.6552 0;
0 0 -0.0246 0 0 9.6552;

-20.9440 0 0 -448.3776 0 0;
0 -20.9440 0 0 -448.3776 0;
0 0 -20.9440 0 0 -448.3776];

B-rw= [0 0 0;
0 0 0;
0 0 0;

294.9853 0 0;
0 294.9853 0;
0 0 294.9853];

C_rw = [1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0];

D_rw = [0 0 0;

0 0 0;
0 0 0];

sysc-rw = ss(A-rw,B.rwC_rw,D_rw);
sysd-rw = c2d(sysc-rw,dt-rw);
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Adrw = sysd-rw.a;
Bd_rw = sysd-rw.b;

%% Simulation outputs to be plotted after run is complete
% 1 = Plot, 0 = Do Not Plot

x.pos-flag = 0;
y-pos-flag = 0;

z-pos-flag = 0;

x_rate_flag = 0;

y-rate-flag = 0;

z_rate-flag = 0;

RW1_flag = 0;

RW2_flag = 0;

RW3_flag = 0;

ss-x-pos-flag = 0;

ss-y-pos-flag = 0;
ss-z-pos-flag = 0;

%% Kalman Filter constants, Linear Quadratic Estimator

Q-lqe = 0.05*eye(6,6);

R-lqe = 0.1* [1 0 0 0 0 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 0 0 0 0;

o o 1 0 0 0 0 0 0 0 0 0;
0 0 0 1 0 0 0 0 0 0 0 0;

0 0 0 0 1 0 0 0 0 0 0 0;

0 0 0 0 0 1 0 0 0 0 0 0;

0 0 0 0 0 0 1 0 0 0 0 0;

O 0 0 0 0 0 0 1 0 0 0 0;

0 0 0 0 0 0 0 0 1 0 0 0;

0 0 0 0 0 0 0 0 0 1 0 0;

0 0 0 0 0 0 0 0 0 0 1 0;

0 0 0 0 0 0 0 0 0 0 0 1);

C_lqe = [0 0 0 0 0 0;
0 0 0 0 0 0;

0 0 0 0 0 0;

0 0 0 1 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1;
1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0;
1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0];

Lss = dlqe(Ad-ab,eye(6,6) ,C_lqe,Q-lqe,R-lqe);
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%% Discrete Linear Quadratic Regulator Constants
Q-lqr = 1*[50000 0 0 0 0 0;

0 50000 0 0 0 0;
o 0 50000 0 0 0;
O 0 0 500000 0 0;

O 0 0 0 500000 0;
o 0 0 0 0 500000];

R_lqr = 1* [1 0 0;

0 1 0;
0 0 1];

K = dlqr(Ad-ab,Bd-ab,Q-lqr,R-lqr);

%% Derivative Gain

Kd = 1.5;

%% create init.h file for use by Arduino

init = fopen('init.h','w+');

fprintf(init,'// initial values\n\n');

fprintf(init,'int timestep = %4.0f;\n\n',timestep);

fprintf(init,'double Ixx = %4.3f;\n',Ixx);
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double

fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double

fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

Iyy = %4.3f;\n',Iyy);
Izz = %4.3f;\n\n',Izz);

Ia = %6.5f;\n\n',Ia);

deriv-gain = %4.2f;\n\n',Kd);

WxestPrev = %3.0f;\n',RW1_init);
Wy-estPrev = %3.0f;\n',RW2_init);
Wz_est_Prev = %3.0f;\n\n',RW3_init);

Wxcmdff_Prev = %3.0f;\n',RW1_init);
Wy-cmd-ff_Prev = %3.0f;\n',RW2_init);
Wzcmdff_Prev = %3.0f;\n\n',RW3_init);

ix_est_Prev = %3.0f;\n',0);
iyestPrev = %3.0f;\n',0);
izestPrev = %3.0f;\n\n',0);

tx_p_Prev = %3.2f;\n',x.posinit);
ty-pPrev = %3.2f;\n',y-pos-init);
tz_p_Prev = %3.2f;\n\n',z-pos-init);

wxpPrev = %3.2f;\n',x-rate-init);
wy-pPrev = %3.2f;\n',y-rate-init);
wz-pPrev = %3.2f;\n\n',z-rate-init);
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%9.8f;\n',DCM-init(ll));

%9.8f;\n),DCM-init(1,2));

%9.8f;\n),DCM-init(1,3));

%9.8f;\n),DCMinit(2,1));

%9.8f;\n),DCM-init(2,2));

%9.8f;\n),DCM-init(2,3));

%9.8f;\n),DCMinit(3,1));

%9.8f;\n',DCMinit(3,2));

%9.8f;\n\n),DCM-init(3,3));

fprintf(init,'double
fprintf(init,'double

fprintf(init,'double

fprintf(init,'double

fprintf(initldouble

fprintf(initldouble

fprintf(initldouble

fprintf(init,'double

fprintf(initldouble

DCM-11-Prev

DCM-12-Prev

DCM-13-Prev

DCM-21-Prev

DCM-22-Prev

DCM-23-Prev

DCM-31-Prev

DCM-32-Prev

DCM-33-Prev

%9.8f;\n',Ad-ab(ll));

%9.8f;\n),Ad-ab(1,2));

%9.8f;\n),Ad-ab(1,3));

%9.8f;\n',Ad-ab(1,4));

%9.8f;\n',Ad-ab(1,5));

%9.8f;\n',Ad-ab(1,6));

%9.8f;\n),Ad-ab(2,1));

%9.8f;\n),Ad-ab(2,2));

%9.8f;\n',Ad-ab(2,3));

%9.8f;\n),Ad-ab(2,4));

%9.8f;\n',Ad-ab(2,5));

%9.8f;\n),Ad-ab(2,6));

%9.8f;\n',Ad-ab(3,1));

%9.8f;\n),Ad-ab(3,2));

%9.8f;\n',Ad-ab(3,3));

%9.8f;\n',Ad-ab(3,4));

%9.8f;\n',Ad-ab(3,5));

%9.8f;\n',Ad-ab(3,6));

%9.8f;\n',Ad-ab(4,1));

%9.8f;\n',Ad-ab(4,2));

%9.8f;\n',Ad-ab(4,3));

%9.8f;\n',Ad-ab(4,4));

%9.8f;\n',Ad-ab(4,5));

%9.8f;\n',Ad-ab(4,6));

%9.8f;\n',Ad-ab(5,1));

%9.8f;\n',Ad-ab(5,2));

%9.8f;\n',Ad-ab(5,3));

%9.8f;\n',Ad-ab(5,4));

%9.8f;\n',Ad-ab(5,5));

%9.8f;\n',Ad-ab(5,6));

%9.8f;\n',Ad-ab(6,1));

%9.8f;\n',Ad-ab(6,2));

%9.8f;\n',Ad-ab(6,3));

%9.8f;\n',Ad-ab(6,4));

%9.8f;\n',Ad-ab(6,5));

%9.8f;\n\n',Ad-ab(6,6));

%9.8f;\n',Bd-ab(ll));

%9.8f;\n',Bd-ab(1,2));

%9.8f;\n',Bd-ab(1,3));

%9.8f;\n',Bd-ab(2,1));

%9.8f;\n',Bd-ab(2,2));

%9.8f;\n',Bd-ab(2,3));

fprintf(initldouble Ad-11

fprintf(initldouble Ad-12

fprintf(initldouble Ad-13

fprintf(init,)double Ad-14

fprintf(initldouble Ad-15

fprintf(initldouble Ad-16

fprintf(initldouble Ad-21

fprintf(initldouble Ad-22

fprintf(initldouble Ad-23

fprintf(initldouble Ad-24

fprintf(initldouble Ad-25

fprintf(initldouble Ad-26

fprintf(initldouble Ad-31

fprintf(initldouble Ad-32

fprintf(initldouble Ad-33

fprintf(initldouble Ad-34

fprintf(initldouble Ad-35

fprintf(initldouble Ad-36

fprintf(initldouble Ad-41

fprintf(initldouble Ad-42

fprintf(initldouble Ad-43

fprintf(initldouble Ad-44

fprintf(initldouble Ad-45

fprintf(initldouble Ad-46

fprintf(initldouble Ad-51

fprintf(initldouble Ad-52

fprintf(initldouble Ad-53

fprintf(initldouble Ad-54

fprintf(initldouble Ad-55

fprintf(initldouble Ad-56

fprintf(initldouble Ad-61

fprintf(initldouble Ad-62

fprintf(initldouble Ad-63

fprintf(initldouble Ad-64

fprintf(initldouble Ad-65

fprintf(initldouble Ad-66

fprintf(initldouble Bd-ll

fprintf(initldouble Bd-12

fprintf(initldouble Bd-13

fprintf(initldouble Bd-21

fprintf(initldouble Bd-22

fprintf(initldouble Bd-23
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fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

Bd_31
Bd_32

Bd_33

Bd_41
Bd_42

Bd_43

Bd_51

Bd_52

Bd_53

Bd_61

Bd_62

Bd_63

L11

L12
L13
L14
L15
L16
L17
L18
L19

= 29.8f;\n',Bdab(3,1));
= %9.8f;\n',Bd-ab(3,2));

= %9.8f;\n',Bd_ab(3,3));
= %9.8f;\n',Bd-ab(4,1));

= %9.8f;\n',Bd-ab(4,2));
= %9.8f;\n',Bd-ab(4,3));
= %9.8f;\n',Bd-ab(5,1));

= %9.8f;\n',Bdab(5,2));

= %9.8f;\n',Bd_ab(5,3));

= %9.8f;\n',Bdab(6,1));

= %9.8f;\n',Bd_ab(6,2));
= %9.8f;\n\n,,Bd1ab(6,3));

%9.8f;\n',Lss(1,1));

%9.8f;\n',Lss(1,2));

%9.8f;\n',Lss(1,3));

%9.8f;\n',Lss(1,4));

%9.8f;\n',Lss(1,5));

%9.8f;\n',Lss(1,6));

%9.8f;\n',Lss(1,7));

%9.8f;\n',Lss(1,8));
%9.8f;\n',Lss(1,9));

L110 = %9.8f;\n',Lss(1,10));
L111 = %9.8f;\n',Lss(1,11));
L112 = %9.8f;\n',Lss(1,12));
L21

L22
L23
L24
L25
L26
L27
L28
L29
L210

L211

L212

L31

L32
L33
L34
L35
L36
L37
L38
L39

= X9.8f;\n',Lss(2,1));
= %9.8f;\n',Lss(2,2));
= %9.8f;\n',Lss(2,3));
= %9.8f;\n',Lss(2,4));
= %9.8f;\n',Lss(2,5));
= %9.8f;\n',Lss(2,6));
= %9.8f;\n',Lss(2,7));
= %9.8f;\n',Lss(2,8));
" %9.8f;\n',Lss(2,9));

= %9.8f;\n',Lss(2,10));

= %9.8f;\n',Lss(2,11));
= %9.8f;\n',Lss(2,12));

" %9.8f;\n',Lss(3,1));

" %9.8f;\n',Lss(3,2));

S%9.8f;\n',Lss(3,3));

S9.8f;\n',Lss(3,4));

S%9.8;\n',Lss(3,5));

%9.8f;\n',Lss(3,6));

%9.8f;\n',Lss(3,7));

%9.8f;\n',Lss(3,8));

%9.8f;\n',Lss(3,9));
L310 = %9.8f;\n',Lss(3,10));
L311 = %9.8f;\n',Lss(3,11));
L312 = %9.8f;\n',Lss(3,12));
L41 = %9.8f;\n',Lss(4,1));
L42 = %9.8f;\n',Lss(4,2));
L43 = %9.8f;\n',Lss(4,3));
L44 = %9.8f;\n',Lss(4,4));
L45 = %9.8f;\n',Lss(4,5));
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fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double
fprintf(init,'double

L46 = %9.8f;\n',Lss(4,6));
L47 = 29.8f;\n',Lss(4,7));

L48 = %9.8f;\n',Lss(4,8));
L49 = %9.8f;\n',Lss(4,9));
L410 = %9.8f;\n',Lss(4,10));
L411 = %9.8f;\n',Lss(4,11));
L412 = %9.8f;\n',Lss(4,12));
L51 =
L52 =
L53 =
L54
L55
L56
L57
L58
L59
L510
L511
L512
L61
L62
L63
L64
L65
L66
L67
L68
L69

%9.8f;\n',Lss(5,1));

%9.8f;\n',Lss(5,2));

%9.8f;\n',Lss(5,3));

29.8f;\n',Lss(5,4));
19.8f;\n',Lss(5,5));
%9.8f;\n',Lss(5,6));
%9.8f;\n',Lss(5,7));

19.8f;\n',Lss(5,8));
%9.8f;\n',Lss(5,9));

= 29.8f;\n',Lss(5,10));
= %9.8f;\n',Lss(5,11));
= 29.8f;\n',Lss(5,12));

%9.8f;\n',Lss(6,1));

%9.8f;\n',Lss(6,2));

%9.8f;\n',Lss(6,3));

%9.8f;\n',Lss(6,4));
%9.8f;\n',Lss(6,5));

%9.8f;\n',Lss(6,6));

%9.8f;\n',Lss(6,7));

%9.8f;\n',Lss(6,8));

%9.8f;\n',Lss(6,9));
L610 = %9.8f;\n',Lss(6,10));
L611 = %9.8f;\n',Lss(6,11));
L612 = %9.8f;\n\n',Lss(6,12));

K11

K12
K13
K14
K15
K16
K21
K22
K23
K24
K25
K26
K31
K32
K33
K34
K35
K36

%11.8f;\n',K(1,1));

X11.8f;\n',K(1,2));

X11.8f;\n',K(1,3));
X11.8f;\n',K(1,4));

%11.8f;\n',K(1,5));

%11.8f;\n',K(1,6));

%11.8f;\n',K(2,1));
X11.8f;\n',K(2,2));

%11.8f;\n',K(2,3));

%11.8f;\n',K(2,4));

%11.8f;\n',K(2,5));

X11.8f;\n',K(2,6));
%11.8f;\n',K(3,1));

%11.8f;\n',K(3,2));

%11.8f;\n',K(3,3));

%11.8f;\n',K(3,4));

%11.8f;\n',K(3,5));

X11.8f;\n',K(3,6));

fclose(init);
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