TFAWS Passive Thermal Paper Session

Jason Strader, Dr. Rich Hill, Karen Bruzda, Dr. Yuqin Li Laird

Presented By

Jason Strader

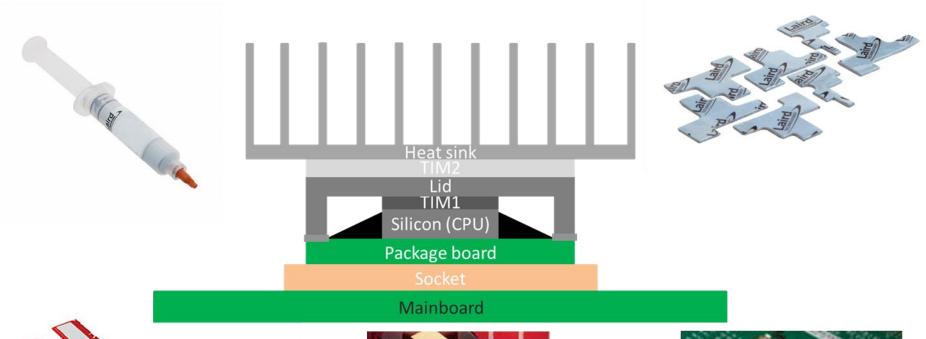
Thermal & Fluids Analysis Workshop TFAWS 2014 August 4 - 8, 2014 NASA Glenn Research Center Cleveland, OH

Outline

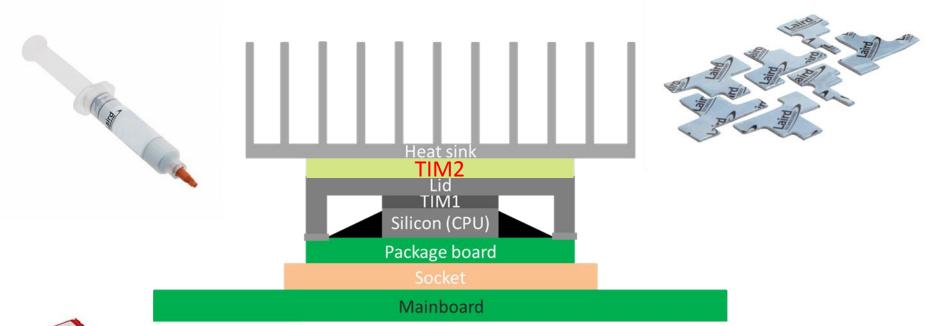
Thermal Interface material (TIM)

Description and function

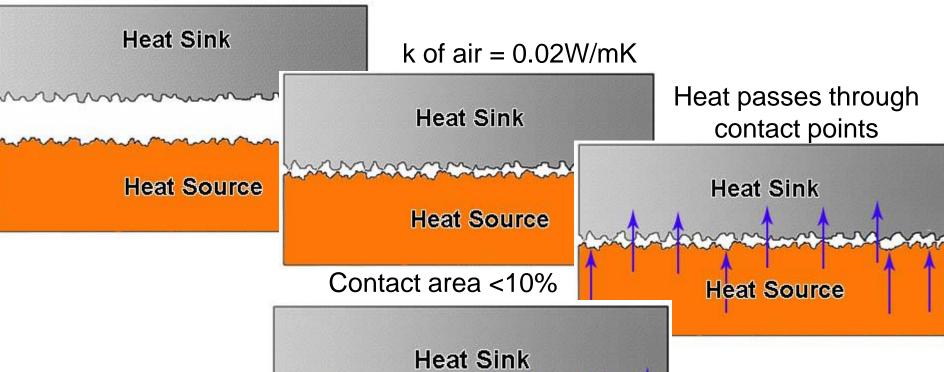
- Types
- Applications
- Challenges
 - Performance
 - Supply Chain
 - Testing
 - Capturing value
 - Growth

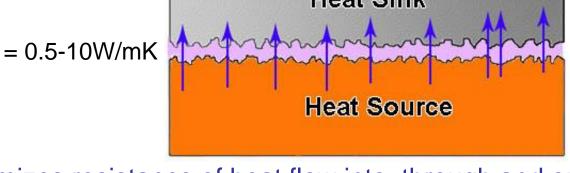

Courtesy jrgb.com

What is a Thermal Interface Material?



What is a Thermal Interface Material?

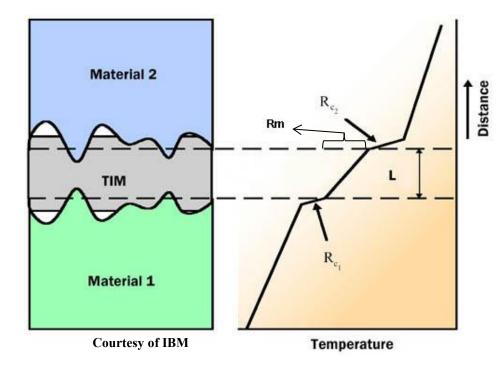



The Problem a TIM Solves

k = thermal conductivity (W/mK)

k of TIM = 0.5-10W/mK

Minimizes resistance of heat flow into, through and out of an interface


The Problem a TIM Solves

Total Thermal Resistance(R_{th}) = Resistance $_{material}(R_m)$ + Resistance $_{contact}(R_{c1+}R_{c2})$

k = Thermal Conductivity (W/mK)
$$L$$
 = thickness $R_m = \underline{L}$ k

$$R_{th} = \underline{L} + R_{c1+}R_{c2}$$
 (Kmm²/W or °Cin²/W)

Minimize total thermal resistance:

- Increase k
- Decrease L
- Decrease R_c

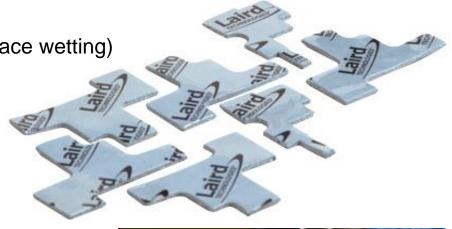
Thermally Conductive Gap Filler

Heat Sink		
High %deflection Medium %deflection		
Low %deflection Heat Source	Heat Source	Heat Source

- Is a TIM that fills "a large gap" between heat generating and heat dissipating surfaces
 - Usually silicone based wets surfaces easily
 - Filled with thermally conductive fillers- BN, ZnO, alumina
 - Gaps of 0.25-5mm (10-200 mils)
 - Thermal Conductivity of 0.5 to 10 W/mK
 - Deflection of 10 to 70% without excessive pressure
 - Delivered between release films on a roll, as sheets or in cartridges for automated dispensing
- Applications
 - Automotive electronic control units (ECUs)
 - Telecommunications
 - Microprocessors
 - LED lighting
 - Memory

Optimum Gap Filler Properties

General

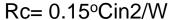

- Low total thermal resistance
 - High thermal conductivity
 - Low contact resistance (good surface wetting)
- Easy to use
- Low outgassing/Low bleeding
- High volume resistivity
- Easy to rework
- Unique colors

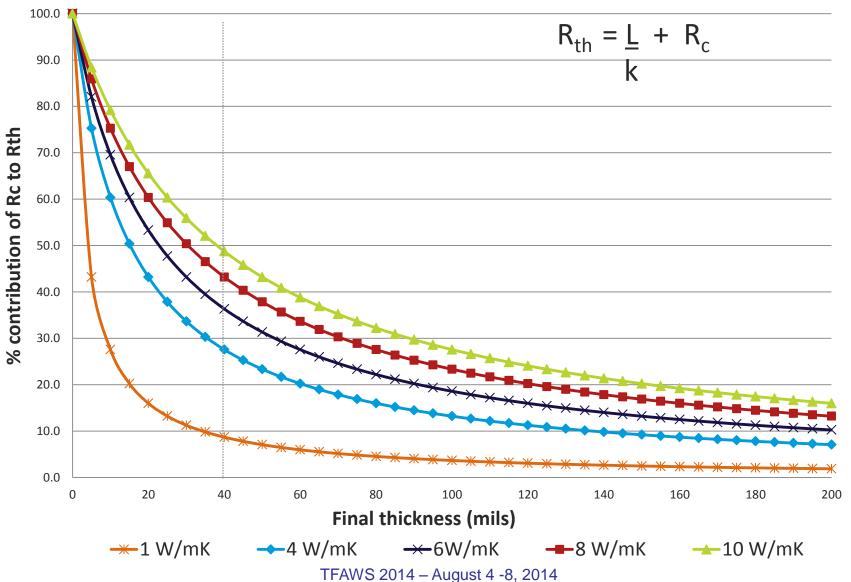
Sheets

- Low modulus
 - Low stress during deflection
 - Low steady state stress
- Finishing options: 1 sided tacky, PSA

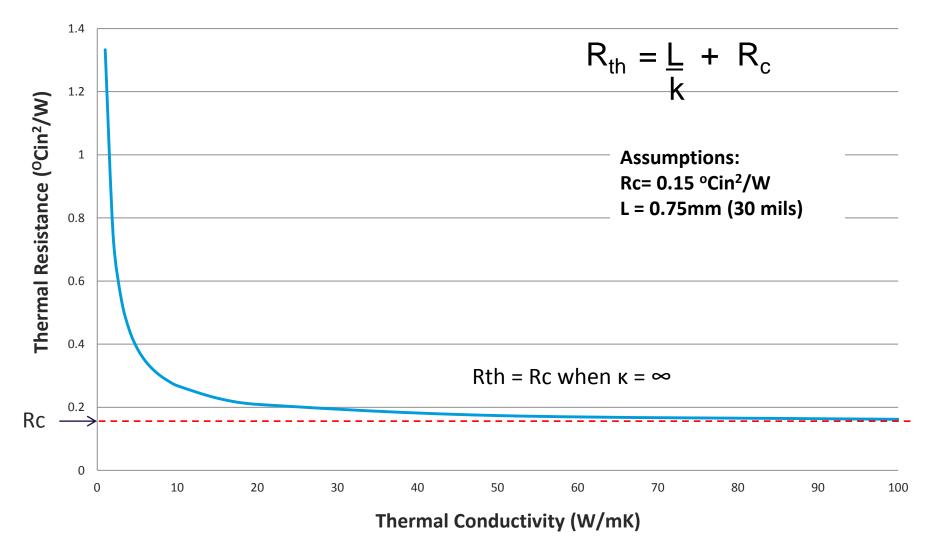
Dispensable

- Multi-application friendly
- Automated process
- Highly conformable at low pressures
- Cured in place option for improved reliability
- Low abrasion

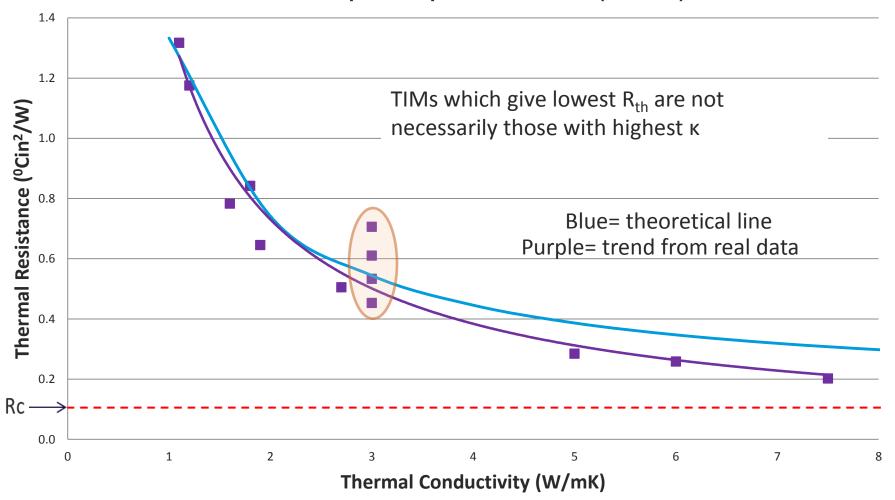




Contact Resistance vs. Thickness



Thermal conductivity Impact on Total Thermal Resistance



Impact of Contact Resistance on Total Thermal Resistance

Thermal Resistance of Popular Gap Fillers at 30 mil (0.75mm) thickness

Thermally Conductive Grease and PCM

- A TIM with low contact resistance and a thin bond line, typically 50 microns or less, for use in applications having relatively flat surfaces constant applied pressure
 - May be silicone or non silicone based
 - Filled with thermally conductive fillers BN, ZnO, alumina
 - Dispensable or screen printable
 - Shear thinning, non-slumping, and non-dripping
 - Thermal Conductivity of 0.5 to 7 W/mK
 - Delivered as tabbed parts on rolls, tabbed strips, in bulk cans, syringes or cartridges
 - Flows and wets surfaces at room temperature (greases)
 - Wets surfaces when heated to device operating temperatures (pcm)

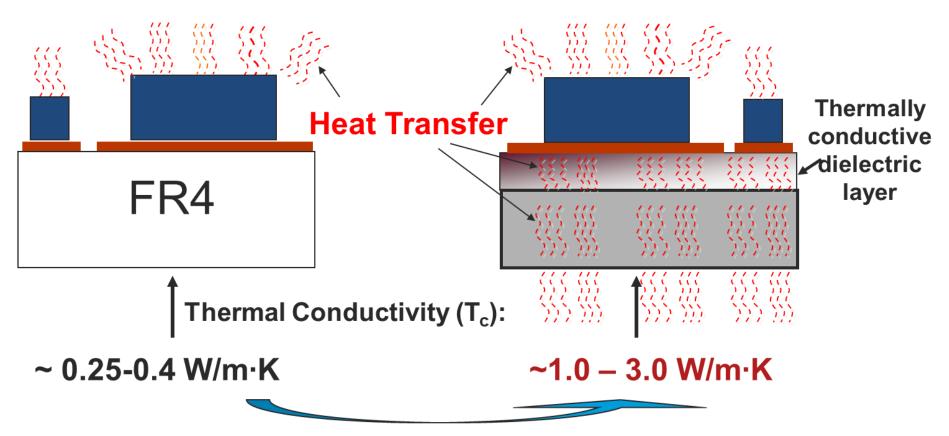
Grease and PCM Optimal Properties, Applications

Optimal Properties

- Low total thermal resistance
 - High thermal conductivity
 - Low contact resistance (good surface wetting)
- Low outgassing/Low bleeding
- High volume resistivity
- East to apply
 - Naturally tacky tabbed parts
 - Screen print and dispense
- Easy to rework
- Resistant to pump out
- Long term reliability
- Soften and flow at or below operating temperature of device (pcm)

Applications

- Notebook and desktop computers: CPU, GPU, APU, memory
- Miscellaneous electronic devices that generate heat
 - Arcade games, game consoles, power supplies, LEDs, braking systems, set top boxes and more... TFAWS 2014 – August 4 -8, 2014



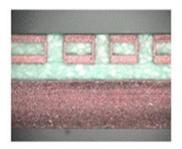
Thermally Conductive Printed Circuit Board Material (TcPCB)

Thermally Conductive PCB

Heat transfer Increased 4-12 times

TcPCB Structure and Application

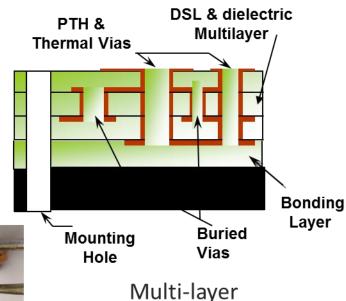
- Epoxy based composites with thermally conductive filler
- Typically 4 8 mil, thicker for multilayer applications
- Free-standing dielectric sheets, flexible design construction
- Uncured (vs B-staged), good flow during lamination
- High RTI rating


Copper Foil

Thermally conductive dielectric

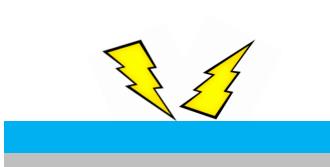
Base Metal

Lamination

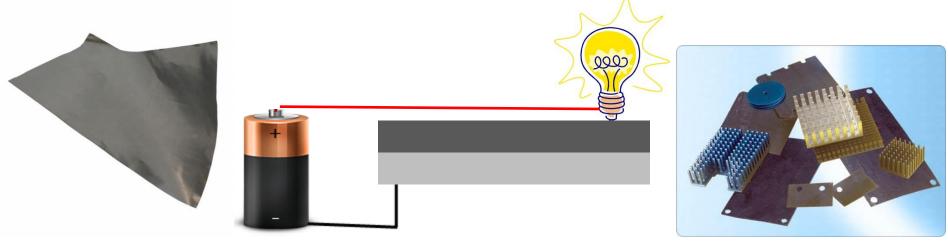

Two-layer cross-section

LED board

TcPCB based TE module



Thermally Conductive Electrical Insulator

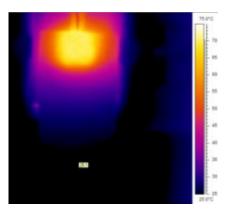

- Thermal transfer with high electrical isolation
 - Typically silicone based material, coated on insulating plastic films or fiberglass
 - Epoxy based adhesive materials
 - Require cure
- Applications
 - TO-220/240
 - Amplifier components
 - Anywhere both heat transfer and high electrical isolation are needed

 TFAWS 2014 August 4 -8, 2014

Electrically and Thermally Conductive

- Thermal transfer with high electrical conductivity
 - Flexible graphite sheets
 - Anisotropic thermal conductivity
 - Adhesive options
 - Electrically conductive
 - Patterned
- Applications
 - High end processors requiring a ground plane
 - Power conversion
 - Telecommunication switching hardware

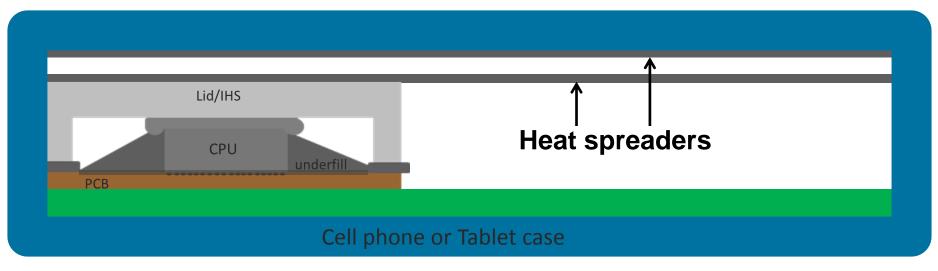
Heat Spreading



Applications

- Mobile computing
 - Cell phones
 - Tablets
 - Laptops/Ultrabooks
- Displays

Materials


- Metal foils
- Graphite sheets
- Thermally conductive plastics

Poor heat spreader

High performance heat spreader

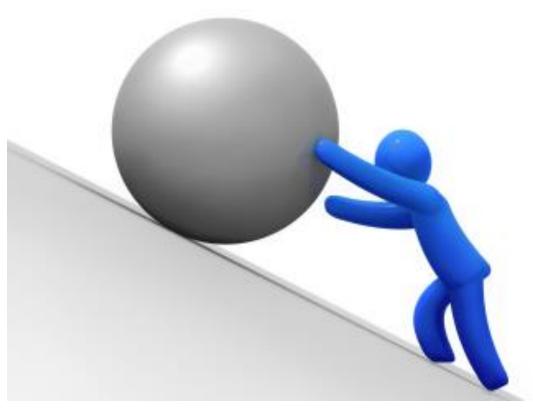
Thermally/Electrically Conductive Plastics

- Thermally Conductive & Electrically Isolating
 - High thermal conductivity (up to 10 W/m-K)
 - Mechanically strong
 - Moldable to small form factor, complex shapes
- Thermally Conductive & Electrically Conductive
 - High thermal conductivity (up to 20 W/m-K)
 - Mechanically strong
 - Moldable to small form factor, complex shapes
- Several Plastics Currently Available
- Applications
 - Mobile device cases
 - Laptop/Ultrabook
 - Cell phone
 - Tablet PC
 - Complex heat sinks
 - LED lighting
 - Light weight heat sinks
 - Automotive applications

Heat Sink for Automotive Crash Avoidance Camera

Indoor Recessed LED Lighting Heat Sinks

Mobile Device Battery Cover



Indoor LED Lighting Lamp Bases 19

Challenges

Courtesy marksanborn.com

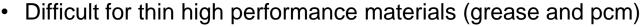
Challenge: Performance

- Reduce total thermal resistance
 - Higher thermal conductivity
 - Low contact resistance (soft easy to flow)
- Non silicones soft and stable
 - Formulate for reliability
- Higher performance formulations
 - May require process changes
- Easier to use, faster application
 - Easy to peel soft materials without stretching or tearing
 - Low abrasion, no sag, no drip for automated dispensables
- Longer shelf life
- Reduced outgassing
- Shorter design cycles while maintaining reliability and performance

Challenge: Supply Chain

- Raw material volumes are low for many suppliers
 - Limited leverage with large suppliers
 - Problems that do arise
 - Discontinued Products
 - Change of production locations
 - Revision of specifications
- Above 90 weight percent filler is not unusual
 - Requires sophisticated packing
 - Multiple fillers, polymers and additives in a composition
 - Fillers and matrix work together
 - Carefully designed for packing & deflection
 - Dual sourcing is a development challenge
- Suppliers can become competitors
 - Resin suppliers
 - Filler suppliers
- High performance TIM manufacturers must anticipate these issues and design products accordingly
 - Dual sourcing
 - Close contact with suppliers is critical but not easy

Challenge: Thermal Testing


Thermal conductivity

- ASTM D5470 for thick materials
 - · Build your own tester
 - Time consuming
 - Cannot measure anisotropy
- ISO Standard 22007-2 Hot Disk transient plane
 - Anisotropy requires specific heat
- Laser flash
 - Expensive equipment
 - Complicated sample prep

Thermal resistance

- ASTM D5470
 - Build your own device

Courtesy of thermtest.com

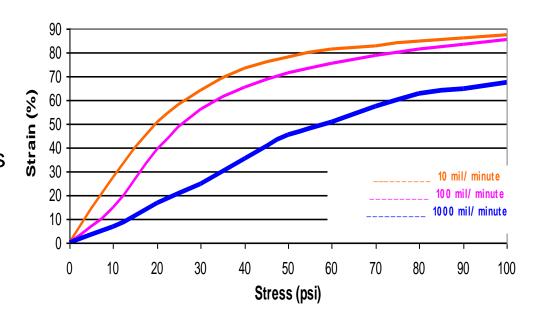
 Must combine with thermal test vehicle (TTV), and real application tests for accurate evaluation

Customer custom testing

- Build or buy new equipment
- Develop a new method

ASTM D5470

Challenge: Mechanical Testing

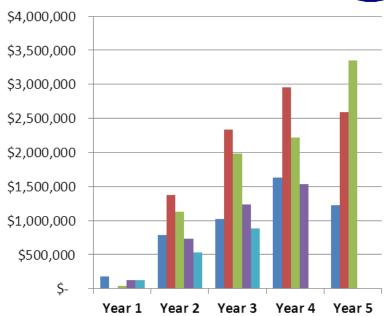


Deflection (not compression)

- Educate the customer
- Material comparison only
- Deflection rate users do not assemble components in mm per minute but mm per second
- Specimen size
- Fixture size
- Test surface properties

Hardness (Durometer)

- Hardness is not deflection
- Over-simplification used by industry
- Indentation test


Popular Gap Filler Strain vs Stress at three Different Strain Rates

Challenge: Capturing Value

- Time to acceptance
 - Development costs
 - Equipment cost
- Recognize the value that your products bring to the customer is more than thermal performance!
 - Reliability over many years
 - Consistency
 - Reliable supply chain
 - Products meet promised performance values
 - Speed of new development and order delivery
 - Pay pennies more for a good TIM to reduce dollars on other component

Challenge: Capturing Value

Counterfeiters

- Your company name and logo is on the package
 - The products look and feel like yours
 - You are getting performance complaints by customers
 - It may not be something you made!
- Serious consequences for the "manufacturer of record"
 - Product recalls
 - Fails agency recognized test
 - Not flame retardant Injuries!
 - Performance can be inferior
 - Environmental regulations violated
 - You can get sued!

- Intellectual Property (IP)
 - Develop an IP strategy
 - Patents vs. trade secrets
 - Enforce the IP your technologists develop
 - Affords protection in the market place
- Good customer relationships
- Unique Identifiers TFAWS 2014 August 4 -8, 2014

Challenge: Growth

Mature markets

- Market research firms show growth at ~3-6%
- How to grow faster?
 - Avoid price war
 - Develop and use IP for protection from race to the bottom
 - Adjacent markets
 - Transformational Products

Adjacent Markets

- Filled thermoplastics for new applications
 - Thermally conductivity
 - Electrical conductivity
- Heat Spreading
- Electromagnetic interference (EMI) materials
- Multi-functional materials
 - EMI & Thermal
 - Absorbing & Thermal
- Microelectronic packaging materials